Experimental Characterization of Sound Absorption for Composite Panel Made of Perforated Plate and Membrane Foam Layer
Abstract
A recent key challenge in noise engineering is the development of structures or materials that achieve desirable acoustic performance in practical settings. Combinations of porous layers and perforated plates offer potential composite absorbers for various acoustic applications. The present work conducts experimental characterizations of sound absorption performance of absorbers based on membrane foams combined with perforated plates. Membrane foams with the well-controlled cell size and porosity are fabricated by milli-fluidic tools, whereas perforated plates are made within a tuned perforation ratio. The three-microphone method is used to perform the acoustic measurements. The results obtained from ten combination samples reveal that the sound absorption behavior of the foam-based layers can be successfully tailored and improved by a thin perforated plate within a reasonable hole diameter and spacing while maintaining the total thickness of the composite absorber.Keywords:
membrane foam, monodisperse, perforated plate, composite absorber, sound absorptionReferences
1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed., John Wiley & Sons.
2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound-absorbing materials, Sound & Vibration, 44(7): 12–18.
3. ASTM C423-23 (2023), Standard test method for sound absorption and sound absorption coefficients by the reverberation room method, ATM International, https://doi.org/10.1520/C0423-22
4. Atalla N., Sgard F. (2007), Modeling of perforated plates and screens using rigid frame porous models, Journal of Sound and Vibration, 303(1–2): 195–208, https://doi.org/10.1016/j.jsv.2007.01.012
5. Attenborough K., Vér I.L. (2006), Sound-absorbing materials and sound absorbers, [in:] Noise and Vibration Control Engineering: Principles and Applications, Vér I.L., Veranek L.L. [Eds.], 2nd ed., John Wiley & Sons, https://doi.org/10.1002/9780470172568.ch8
6. Borelli D., Schenone C. (2021), On the acoustic transparency of perforated metal plates facing a porous fibrous material, Noise Mapping, 8(1): 185–203, https://doi.org/10.1515/noise-2021-0014
7. Boulvert J. et al. (2019), Optimally graded porous material for broadband perfect absorption of sound, Journal of Applied Physics, 126(17): 175101, https://doi.org/10.1063/1.5119715
8. Duan H., Shen X., Yang F., Bai P., Lou X., Li Z. (2019), Parameter optimization for composite structures of microperforated panel and porous metal for optimal sound absorption performance, Applied Sciences, 9(22): 4798, https://doi.org/10.3390/app9224798
9. Gasser S., Paun F., Bréchet Y. (2005), Absorptive properties of rigid porous media: Application to face centered cubic sphere packing, The Journal of the Acoustical Society of America, 117(4): 2090–2099, https://doi.org/10.1121/1.1863052
10. Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3): 487–497, https://doi.org/10.24425/aoa.2020.134066
11. Kosała K. (2024), Modelling the acoustic properties of baffles made of porous and fibrous materials, Archives of Acoustics, 49(3): 345–357, https://doi.org/10.24425/aoa.2024.148792
12. Langlois V., Kaddami A., Pitois O., Perrot C. (2020), Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study, The Journal of the Acoustical Society of America, 148(3): 1767–1778, https://doi.org/10.1121/10.0001995
13. Lee C.-Y., Leamy M.J., Nadler J.H. (2009), Acoustic absorption calculation in irreducible porous media: A unified computational approach, The Journal of the Acoustical Society of America, 126(4): 1862–1870, https://doi.org/10.1121/1.3205399
14. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25–32, https://doi.org/10.1016/j.apacoust.2017.01.032
15. Nguyen C.T., Langlois V., Guilleminot J., Duval A., Perrot C. (2024), Effect of pore size polydispersity on the acoustic properties of high-porosity solid foams, Physics of Fluids, 36(4): 047101, https://doi.org/10.1063/5.0191517
16. Olny X., Panneton R. (2008), Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America, 123(2): 814–824, https://doi.org/10.1121/1.2828066
17. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027–2040, https://doi.org/10.1121/1.2169923
18. Park J.H. et al. (2017), Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling, Journal of Sound and Vibration, 397(9): 17–30, https://doi.org/10.1016/j.jsv.2017.03.004
19. Sagartzazu X., Hervella-Nieto L., Pagalday J.M. (2008), Review in sound absorbing materials, Archives of Computational Methods in Engineering, 15(3): 311–342, https://doi.org/10.1007/s11831-008-9022-1
20. Salissou Y., Panneton R. (2010), Wideband characterization of the complex wave number and characteristic impedance of sound absorbers, The Journal of the Acoustical Society of America, 128(5): 2868–2876, https://doi.org/10.1121/1.3488307
21. Soltani P., Norouzi M. (2020), Prediction of the sound absorption behavior of nonwoven fabrics: Computational study and experimental validation, Journal of Sound and Vibration, 485: 115607, https://doi.org/10.1016/j.jsv.2020.115607
22. Trinh V.H., Guilleminot J., Perrot C. (2021), On the sensitivity of the design of composite sound absorbing structures, Materials & Design, 210: 110058, https://doi.org/10.1016/j.matdes.2021.110058
23. Trinh V.H., Guilleminot J., Perrot C., Vu V.D. (2022a), Learning acoustic responses from experiments: A multiscale-informed transfer learning approach, The Journal of the Acoustical Society of America, 151(4): 2587–2601, https://doi.org/10.1121/10.0010187
24. Trinh V.H., Langlois V., Guilleminot J., Perrot C., Khidas Y., Pitois O. (2019), Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Materials & Design, 162: 345–361, https://doi.org/10.1016/j.matdes.2018.11.023
25. Trinh V.-H., Nguyen T.-V., Nguyen T.-H.-N., Nguyen M.-T. (2022b), Design of sound absorbers based on open-cell foams via microstructure-based modeling, Archives of Acoustics, 47(4): 501–512, https://doi.org/10.24425/aoa.2022.142894
26. Viet Dung V., Panneton R., Gagne R. (2019), Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach, The Journal of the Acoustical Society of America, 145(6): 3606–3624, https://doi.org/10.1121/1.5111753
27. Yang X., Ren S., Wang W., Liu X., Xin F., Lu T. (2015), A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells, Composites Science and Technology, 118: 276–283, https://doi.org/10.1016/j.compscitech.2015.09.009
28. Zhang H., Wang Y., Lu K., Zhao H., Yu D., Wen J. (2021), SAP-Net: Deep learning to predict sound absorption performance of metaporous materials, Materials & Design, 212: 110156, https://doi.org/10.1016/j.matdes.2021.110156
29. Zieliński T.G. et al. (2022), Taking advantage of a 3D printing imperfection in the development of soundabsorbing materials, Applied Acoustics, 197: 108941, https://doi.org/10.1016/j.apacoust.2022.108941
30. Zieliński T.G., Venegas R., Perrot C., Cervenka M., Chevillotte F., Attenborough K. (2020), Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration, 483: 115441, https://doi.org/10.1016/j.jsv.2020.115441
2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound-absorbing materials, Sound & Vibration, 44(7): 12–18.
3. ASTM C423-23 (2023), Standard test method for sound absorption and sound absorption coefficients by the reverberation room method, ATM International, https://doi.org/10.1520/C0423-22
4. Atalla N., Sgard F. (2007), Modeling of perforated plates and screens using rigid frame porous models, Journal of Sound and Vibration, 303(1–2): 195–208, https://doi.org/10.1016/j.jsv.2007.01.012
5. Attenborough K., Vér I.L. (2006), Sound-absorbing materials and sound absorbers, [in:] Noise and Vibration Control Engineering: Principles and Applications, Vér I.L., Veranek L.L. [Eds.], 2nd ed., John Wiley & Sons, https://doi.org/10.1002/9780470172568.ch8
6. Borelli D., Schenone C. (2021), On the acoustic transparency of perforated metal plates facing a porous fibrous material, Noise Mapping, 8(1): 185–203, https://doi.org/10.1515/noise-2021-0014
7. Boulvert J. et al. (2019), Optimally graded porous material for broadband perfect absorption of sound, Journal of Applied Physics, 126(17): 175101, https://doi.org/10.1063/1.5119715
8. Duan H., Shen X., Yang F., Bai P., Lou X., Li Z. (2019), Parameter optimization for composite structures of microperforated panel and porous metal for optimal sound absorption performance, Applied Sciences, 9(22): 4798, https://doi.org/10.3390/app9224798
9. Gasser S., Paun F., Bréchet Y. (2005), Absorptive properties of rigid porous media: Application to face centered cubic sphere packing, The Journal of the Acoustical Society of America, 117(4): 2090–2099, https://doi.org/10.1121/1.1863052
10. Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3): 487–497, https://doi.org/10.24425/aoa.2020.134066
11. Kosała K. (2024), Modelling the acoustic properties of baffles made of porous and fibrous materials, Archives of Acoustics, 49(3): 345–357, https://doi.org/10.24425/aoa.2024.148792
12. Langlois V., Kaddami A., Pitois O., Perrot C. (2020), Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study, The Journal of the Acoustical Society of America, 148(3): 1767–1778, https://doi.org/10.1121/10.0001995
13. Lee C.-Y., Leamy M.J., Nadler J.H. (2009), Acoustic absorption calculation in irreducible porous media: A unified computational approach, The Journal of the Acoustical Society of America, 126(4): 1862–1870, https://doi.org/10.1121/1.3205399
14. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25–32, https://doi.org/10.1016/j.apacoust.2017.01.032
15. Nguyen C.T., Langlois V., Guilleminot J., Duval A., Perrot C. (2024), Effect of pore size polydispersity on the acoustic properties of high-porosity solid foams, Physics of Fluids, 36(4): 047101, https://doi.org/10.1063/5.0191517
16. Olny X., Panneton R. (2008), Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America, 123(2): 814–824, https://doi.org/10.1121/1.2828066
17. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027–2040, https://doi.org/10.1121/1.2169923
18. Park J.H. et al. (2017), Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling, Journal of Sound and Vibration, 397(9): 17–30, https://doi.org/10.1016/j.jsv.2017.03.004
19. Sagartzazu X., Hervella-Nieto L., Pagalday J.M. (2008), Review in sound absorbing materials, Archives of Computational Methods in Engineering, 15(3): 311–342, https://doi.org/10.1007/s11831-008-9022-1
20. Salissou Y., Panneton R. (2010), Wideband characterization of the complex wave number and characteristic impedance of sound absorbers, The Journal of the Acoustical Society of America, 128(5): 2868–2876, https://doi.org/10.1121/1.3488307
21. Soltani P., Norouzi M. (2020), Prediction of the sound absorption behavior of nonwoven fabrics: Computational study and experimental validation, Journal of Sound and Vibration, 485: 115607, https://doi.org/10.1016/j.jsv.2020.115607
22. Trinh V.H., Guilleminot J., Perrot C. (2021), On the sensitivity of the design of composite sound absorbing structures, Materials & Design, 210: 110058, https://doi.org/10.1016/j.matdes.2021.110058
23. Trinh V.H., Guilleminot J., Perrot C., Vu V.D. (2022a), Learning acoustic responses from experiments: A multiscale-informed transfer learning approach, The Journal of the Acoustical Society of America, 151(4): 2587–2601, https://doi.org/10.1121/10.0010187
24. Trinh V.H., Langlois V., Guilleminot J., Perrot C., Khidas Y., Pitois O. (2019), Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Materials & Design, 162: 345–361, https://doi.org/10.1016/j.matdes.2018.11.023
25. Trinh V.-H., Nguyen T.-V., Nguyen T.-H.-N., Nguyen M.-T. (2022b), Design of sound absorbers based on open-cell foams via microstructure-based modeling, Archives of Acoustics, 47(4): 501–512, https://doi.org/10.24425/aoa.2022.142894
26. Viet Dung V., Panneton R., Gagne R. (2019), Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach, The Journal of the Acoustical Society of America, 145(6): 3606–3624, https://doi.org/10.1121/1.5111753
27. Yang X., Ren S., Wang W., Liu X., Xin F., Lu T. (2015), A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells, Composites Science and Technology, 118: 276–283, https://doi.org/10.1016/j.compscitech.2015.09.009
28. Zhang H., Wang Y., Lu K., Zhao H., Yu D., Wen J. (2021), SAP-Net: Deep learning to predict sound absorption performance of metaporous materials, Materials & Design, 212: 110156, https://doi.org/10.1016/j.matdes.2021.110156
29. Zieliński T.G. et al. (2022), Taking advantage of a 3D printing imperfection in the development of soundabsorbing materials, Applied Acoustics, 197: 108941, https://doi.org/10.1016/j.apacoust.2022.108941
30. Zieliński T.G., Venegas R., Perrot C., Cervenka M., Chevillotte F., Attenborough K. (2020), Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration, 483: 115441, https://doi.org/10.1016/j.jsv.2020.115441

