Experimental Characterization of Sound Absorption for Composite Panel Made of Perforated Plate and Membrane Foam Layer

Downloads

Authors

  • Van-Hai TRINH Institute of Vehicle and Energy Engineering, Le Quy Don Technical University, Vietnam
  • Mu HE School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China

Abstract

A recent key challenge in noise engineering is the development of structures or materials that achieve desirable acoustic performance in practical settings. Combinations of porous layers and perforated plates offer potential composite absorbers for various acoustic applications. The present work conducts experimental characterizations of sound absorption performance of absorbers based on membrane foams combined with perforated plates. Membrane foams with the well-controlled cell size and porosity are fabricated by milli-fluidic tools, whereas perforated plates are made within a tuned perforation ratio. The three-microphone method is used to perform the acoustic measurements. The results obtained from ten combination samples reveal that the sound absorption behavior of the foam-based layers can be successfully tailored and improved by a thin perforated plate within a reasonable hole diameter and spacing while maintaining the total thickness of the composite absorber.

Keywords:

membrane foam, monodisperse, perforated plate, composite absorber, sound absorption

References

1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed., John Wiley & Sons.

2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound-absorbing materials, Sound & Vibration, 44(7): 12–18.

3. ASTM C423-23 (2023), Standard test method for sound absorption and sound absorption coefficients by the reverberation room method, ATM International, https://doi.org/10.1520/C0423-22

4. Atalla N., Sgard F. (2007), Modeling of perforated plates and screens using rigid frame porous models, Journal of Sound and Vibration, 303(1–2): 195–208, https://doi.org/10.1016/j.jsv.2007.01.012

5. Attenborough K., Vér I.L. (2006), Sound-absorbing materials and sound absorbers, [in:] Noise and Vibration Control Engineering: Principles and Applications, Vér I.L., Veranek L.L. [Eds.], 2nd ed., John Wiley & Sons, https://doi.org/10.1002/9780470172568.ch8

6. Borelli D., Schenone C. (2021), On the acoustic transparency of perforated metal plates facing a porous fibrous material, Noise Mapping, 8(1): 185–203, https://doi.org/10.1515/noise-2021-0014

7. Boulvert J. et al. (2019), Optimally graded porous material for broadband perfect absorption of sound, Journal of Applied Physics, 126(17): 175101, https://doi.org/10.1063/1.5119715

8. Duan H., Shen X., Yang F., Bai P., Lou X., Li Z. (2019), Parameter optimization for composite structures of microperforated panel and porous metal for optimal sound absorption performance, Applied Sciences, 9(22): 4798, https://doi.org/10.3390/app9224798

9. Gasser S., Paun F., Bréchet Y. (2005), Absorptive properties of rigid porous media: Application to face centered cubic sphere packing, The Journal of the Acoustical Society of America, 117(4): 2090–2099, https://doi.org/10.1121/1.1863052

10. Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3): 487–497, https://doi.org/10.24425/aoa.2020.134066

11. Kosała K. (2024), Modelling the acoustic properties of baffles made of porous and fibrous materials, Archives of Acoustics, 49(3): 345–357, https://doi.org/10.24425/aoa.2024.148792

12. Langlois V., Kaddami A., Pitois O., Perrot C. (2020), Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study, The Journal of the Acoustical Society of America, 148(3): 1767–1778, https://doi.org/10.1121/10.0001995

13. Lee C.-Y., Leamy M.J., Nadler J.H. (2009), Acoustic absorption calculation in irreducible porous media: A unified computational approach, The Journal of the Acoustical Society of America, 126(4): 1862–1870, https://doi.org/10.1121/1.3205399

14. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25–32, https://doi.org/10.1016/j.apacoust.2017.01.032

15. Nguyen C.T., Langlois V., Guilleminot J., Duval A., Perrot C. (2024), Effect of pore size polydispersity on the acoustic properties of high-porosity solid foams, Physics of Fluids, 36(4): 047101, https://doi.org/10.1063/5.0191517

16. Olny X., Panneton R. (2008), Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America, 123(2): 814–824, https://doi.org/10.1121/1.2828066

17. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027–2040, https://doi.org/10.1121/1.2169923

18. Park J.H. et al. (2017), Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling, Journal of Sound and Vibration, 397(9): 17–30, https://doi.org/10.1016/j.jsv.2017.03.004

19. Sagartzazu X., Hervella-Nieto L., Pagalday J.M. (2008), Review in sound absorbing materials, Archives of Computational Methods in Engineering, 15(3): 311–342, https://doi.org/10.1007/s11831-008-9022-1

20. Salissou Y., Panneton R. (2010), Wideband characterization of the complex wave number and characteristic impedance of sound absorbers, The Journal of the Acoustical Society of America, 128(5): 2868–2876, https://doi.org/10.1121/1.3488307

21. Soltani P., Norouzi M. (2020), Prediction of the sound absorption behavior of nonwoven fabrics: Computational study and experimental validation, Journal of Sound and Vibration, 485: 115607, https://doi.org/10.1016/j.jsv.2020.115607

22. Trinh V.H., Guilleminot J., Perrot C. (2021), On the sensitivity of the design of composite sound absorbing structures, Materials & Design, 210: 110058, https://doi.org/10.1016/j.matdes.2021.110058

23. Trinh V.H., Guilleminot J., Perrot C., Vu V.D. (2022a), Learning acoustic responses from experiments: A multiscale-informed transfer learning approach, The Journal of the Acoustical Society of America, 151(4): 2587–2601, https://doi.org/10.1121/10.0010187

24. Trinh V.H., Langlois V., Guilleminot J., Perrot C., Khidas Y., Pitois O. (2019), Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Materials & Design, 162: 345–361, https://doi.org/10.1016/j.matdes.2018.11.023

25. Trinh V.-H., Nguyen T.-V., Nguyen T.-H.-N., Nguyen M.-T. (2022b), Design of sound absorbers based on open-cell foams via microstructure-based modeling, Archives of Acoustics, 47(4): 501–512, https://doi.org/10.24425/aoa.2022.142894

26. Viet Dung V., Panneton R., Gagne R. (2019), Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach, The Journal of the Acoustical Society of America, 145(6): 3606–3624, https://doi.org/10.1121/1.5111753

27. Yang X., Ren S., Wang W., Liu X., Xin F., Lu T. (2015), A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells, Composites Science and Technology, 118: 276–283, https://doi.org/10.1016/j.compscitech.2015.09.009

28. Zhang H., Wang Y., Lu K., Zhao H., Yu D., Wen J. (2021), SAP-Net: Deep learning to predict sound absorption performance of metaporous materials, Materials & Design, 212: 110156, https://doi.org/10.1016/j.matdes.2021.110156

29. Zieliński T.G. et al. (2022), Taking advantage of a 3D printing imperfection in the development of soundabsorbing materials, Applied Acoustics, 197: 108941, https://doi.org/10.1016/j.apacoust.2022.108941

30. Zieliński T.G., Venegas R., Perrot C., Cervenka M., Chevillotte F., Attenborough K. (2020), Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration, 483: 115441, https://doi.org/10.1016/j.jsv.2020.115441

Other articles by the same author(s)