Archives of Acoustics, Online first
10.24425/aoa.2025.153658

Determination of the Elastic Constant of the Top Plate of a Cello in the Interaction with the Bridge

Pablo PAUPY
Grupo de Vibraciones, Facultad Regional Delta, Universidad Tecnológica Nacional
Argentina

Pablo TABLA
Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional
Argentina

Dario HUGGENBERGER
Grupo de Vibraciones, Facultad Regional Delta, Universidad Tecnológica Nacional
Argentina

Federico ELFI
Grupo de Vibraciones, Facultad Regional Delta, Universidad Tecnológica Nacional
Argentina

Eneas N. MOREL
Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional; Consejo Nacional de Investigaciones Cientíıficas y Técnicas
Argentina

Jorge R. TORGA
Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional; Consejo Nacional de Investigaciones Cientíıficas y Técnicas
Argentina

This paper aims to determine the equivalent static elastic constant of a cello’s top plate in the interaction with the bridge. Experimental results detailing this constant are presented based on measuring the deformation and forces caused by a system of calibrated springs in similar conditions to that obtained when these forces are produced by the action of the strings. Subsequent tests are conducted following an intervention by a luthier to adjust the sound post, with the aim of assessing the impact on the elastic constants.
Keywords: elasticity; organology; cello bridge; musical acoustics; boundary conditions; interferometry
Full Text: PDF
Copyright © The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

References

Bissinger G. (2006), The violin bridge as filter, The Journal of the Acoustical Society of America, 120(1): 482–491, https://doi.org/10.1121/1.2207576.

Boutillon X., Weinreich G. (1999), Three-dimensional mechanical admittance: Theory and new measurement method applied to the violin bridge, The Journal of the Acoustical Society of America, 105(6): 3524–3533, https://doi.org/10.1121/1.424677.

Cremer L. (1984), The Physics of the Violin, The MIT Press, England.

Elie B., Gautier F., David B. (2013), Analysis of bridge mobility of violins, [in:] Proceedings of the Stockholm Music Acoustics Conference 2013, pp. 54–59, https://hal.science/hal-01060528 (access: 3.06.2024).

Jansson E., Molin N., Saldner H. (1994), On eigenmodes of the violin – Electronic holography and admittance measurements, The Journal of the Acoustical Society of America, 95(2): 1100–1105, https://doi.org/10.1121/1.408470.

Jansson E.V. (2004), Violin frequency response – Bridge mobility and bridge feet distance, Applied Acoustics, 65(12): 1197–1205, https://doi.org/10.1016/j.apacoust.2004.04.007.

Kabała A., Niewczyk B., Gapiński B. (2018), Violin bridge vibration – FEM, Vibrations in Physical Systems, 29: 2018021, https://vibsys.put.poznan.pl/_journal/2018-29/articles/vibsys_2018021.pdf (access: 3.06.2024).

Lodetti L., Gonzalez S., Antonacci F., Sarti A. (2023), Stiffening cello bridges with design, Applied Sciences, 13(2): 928, https://doi.org/10.3390/app13020928.

Malvermi R. et al. (2021), Feature-based representation for violin bridge admittances, arXiv, https://doi.org/10.48550/arXiv.2103.14895.

Minnaert M., Vlam C.C. (1937), The vibrations of the violin bridge, Physica, 4(5): 361–372, https://doi.org/10.1016/S0031-8914(37)80138-X.

Reinicke W., Cremer L. (1970), Application of holographic interferometry to vibrations of the bodies of string instruments, The Journal of the Acoustical Society of America, 47(4B): 131–132, https://doi.org/10.1121/1.1912237.

Vakhtin A.B., Kane D.J., Wood W.R., Peterson K.A. (2003), Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34): 6953–6958, https://doi.org/10.1364/AO.42.006953.

Woodhouse J. (2005), On the “bridge hill” of the violin, Acta Acustica united with Acustica, 91(1): 155–165.

Woodhouse J. (2014), The acoustics of the violin: A review, Reports on Progress in Physics, 77(11): 115901, https://doi.org/10.1088/0034-4885/77/11/115901.




DOI: 10.24425/aoa.2025.153658