Review of the Sonication-Assisted Exfoliation Methods for MoX2 (X: S, Se, Te) Using Water and Ethanol
Abstract
Two-dimensional transition metal dichalcogenides (MoX2, where X = S, Se, Te), have been the research hotspot over the past decade. The sonication-assisted liquid-phase exfoliation method is suitable for the mass production of MoX2 in practical applications. Water and ethanol, rather than organic solvents, are increasingly chosen for liquid-phase exfoliation method due to their non-toxic, environmentally friendly properties. However, a systematic review of the method for MoX2 preparation using water and ethanol is lacking. In this paper, recently published work on the sonication-assisted exfoliation method for MoX2 preparation using water and ethanol is summarized. Three key parameters are focused on: solvents selection, sonication power, and sonication time. Finally, the application of MoX2 flakes and the future outlook of the sonication-assisted liquid-phase exfoliation method using water and ethanol are presented. The review aims to provide guidance on exfoliating MoX2 using the sonication-assisted exfoliation method with water and ethanol.Keywords:
two-dimensional transition metal dichalcogenides, sonication-assisted liquid-phase exfoliation, water, ethanolReferences
1. Aggarwal R., Saini D., Mitra R., Sonkar S.K., Sonker A.K., Westman G. (2024), From bulk molybdenum disulfide (MoS2) to suspensions of exfoliated MoS2 in an aqueous medium and their applications, Langmuir, 40(19): 9855–9872, https://doi.org/10.1021/acs.langmuir.3c03116
2. Ahmad H. et al. (2021), Generation of four-wave mixing in molybdenum ditelluride (MoTe2)-deposited side-polished fibre, Journal of Modern Optics, 68: 425–432, https://doi.org/10.1080/09500340.2021.1908636
3. Akeredolu B.J. et al. (2024), Improved liquid phase exfoliation technique for the fabrication of MoS2/graphene heterostructure-based photodetector, Heliyon, 10(3): e24964, https://doi.org/10.1016/j.heliyon.2024.e24964
4. Backes C. et al. (2017), Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chemistry of Materials, 29: 243–255, https://doi.org/10.1021/acs.chemmater.6b03335
5. Barwich S., Khan U., Coleman J.N. (2013), A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration, The Journal of Physical Chemistry C, 117(37): 19212–19218, https://
doi.org/10.1021/jp4047006.
6. Capello C., Fischer U., Hungerbuhler K. (2007), What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chemistry, 9: 927–934, https://doi.org/10.1039/B617536H
7. Chen X. et al. (2019), Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors, Nanotechnology, 30: 445503, https://doi.org/10.1088/1361-6528/ab35ec
8. Ciesielski A., Samori P. (2014), Graphene via sonication assisted liquid-phase exfoliation, Chemical Society Reviews, 43(1): 381–398, https://doi.org/10.1039/C3CS60217F
9. Coleman J.N. (2013), Liquid exfoliation of defect-free graphene, Accounts of Chemical Research, 46(1): 14–22, https://doi.org/10.1021/ar300009f
10. Coleman J.N. et al. (2011), Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331(6017): 568–571, https://doi.org/10.1126/science.1194975
11. Cunningham G. et al. (2012), Solvent Exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano, 6(4): 3468–3480, https://doi.org/10.1021/nn300503e
12. Forsberg V. et al. (2016), Exfoliated MoS2 in water without additives, PLOS ONE, 11(4): e0154522, https://doi.org/10.1371/journal.pone.0154522
13. Gholamvand Z. et al. (2016), Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst, Nanoscale, 8: 5737–5749, https://doi.org/10.1039/C5NR08553E
14. Griffin A. et al. (2020), Effect of surfactant choice and concentration on the dimensions and yield of liquid-phase-exfoliated nanosheets, Chemistry of Materials, 32(7): 2852–2862, https://doi.org/10.1021/acs.chemmater.9b04684
15. Gupta A., Arunachalam V., Vasudevan S. (2016), Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water, The Journal of Physical Chemistry Letters, 7(23): 4884–4890, https://doi.org/10.1021/acs.jpclett.6b02405
16. Gutierrez M., Henglein A. (1989), Preparation of colloidal semiconductor solutions of MoS2 and WSe2 via sonication, Ultrasonics, 27(5): 259–261, https://doi.org/10.1016/0041-624X(89)90066-8
17. Halim U. et al. (2013), A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction, Nature Communications, 4: 2213, https://doi.org/10.1038/ncomms3213
18. Han C. et al. (2023), Theoretical and experimental investigations on sub-nanosecond KTP-OPO pumped by a hybrid Q-switched laser with AOM and MoTe2 saturable absorber, Optics & Laser Technology, 167: 109760, https://doi.org/10.1016/j.optlastec.2023.109760
19. Hanlon D. et al. (2015), Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nature Communications, 6: 8563, https://doi.org/10.1038/ncomms9563
20. Harvey A. et al. (2017), Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand, 2D Materials, 4: 025054, https://doi.org/10.1088/2053-1583/aa641a
21. Hau H.H. et al. (2021), Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets, Sensors and Actuators A: Physical, 332(Part 1): 113137, https://doi.org/10.1016/j.sna.2021.113137
22. Hu J., Zhou F., Wang J., Cui F., Quan W., Zhang Y. (2023), Chemical vapor deposition syntheses of wafer-scale 2D transition metal dichalcogenide films toward next-generation integrated circuits related applications, Advanced Functional Materials, 33(40): 2303520, https://doi.org/10.1002/adfm.202303520
23. Huang C., Zhou W., Guan W., Ye N. (2024), Molybdenum disulfide nanosheet induced reactive oxygen species for high-efficiency luminol chemiluminescence, Analytica Chimica Acta, 1295: 342324, https://doi.org/10.1016/j.aca.2024.342324
24. Jin X.-F. et al. (2020), Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing, Sensors and Actuators A: Physical, 316: 112388, https://doi.org/10.1016/j.sna.2020.112388
25. Kajbafvala M., Farbod M. (2018), Effective size selection of MoS2 nanosheets by a novel liquid cascade centrifugation: Influences of the flakes dimensions on electrochemical and photoelectrochemical applications, Journal of Colloid and Interface Science, 527: 159–171, https://doi.org/10.1016/j.jcis.2018.05.026
26. Khan U., O’Neill A., Porwal H., May P., Nawaz K., Coleman J.N. (2012), Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation, Carbon, 50(2): 470–475, https://doi.org/10.1016/j.carbon.2011.09.001
27. Khan U., Porwal H., O’Neill A., Nawaz K., May P., Coleman J.N. (2011), Solvent-exfoliated graphene at extremely high concentration, Langmuir, 27(15): 9077–9082, https://doi.org/10.1021/la201797h
28. Kim J. et al. (2015), Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control, Nature Communications, 6: 8294, https://doi.org/10.1038/ncomms9294
29. Kumar B.A., Elangovan, T., Raju, K., Ramalingam G., Sambasivam S., Alam M.M. (2023), Green solvent exfoliation of few layers 2D-MoS2 nanosheets for efficient energy harvesting and storage application, Journal of Energy Storage, 65: 107336, https://doi.org/10.1016/j.est.2023.107336
30. Lee H. et al. (2020), Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing, Nano Research, 13: 2726–2734, https://doi.org/10.1007/s12274-020-2916-4
31. Li X., Wang W., Zhang L., Jiang D., Zheng Y. (2015), Water-exfoliated MoS2 catalyst with enhanced photoelectrochemical activities, Catalysis Communications, 70: 53–57, https://doi.org/10.1016/j.catcom.2015.07.024
32. Li Z. et al. (2020), Mechanisms of liquid-phase exfoliation for the production of graphene, ACS Nano, 14: 10976–10985, https://doi.org/10.1021/acsnano.0c03916
33. Liang Y. et al. (2020), Nano-seconds pulsed Er:Lu2O3 laser using molybdenum ditelluride saturable absorber, Optics & Laser Technology, 121: 105791, https://doi.org/10.1016/j.optlastec.2019.105791
34. Liu Y.T., Zhu X.D., Xie X.M. (2018a), Direct exfoliation of high-quality, atomically thin MoSe2 layers in water, Advanced Sustainable Systems, 2(1): 1700107, https://doi.org/10.1002/adsu.201700107
35. Liu X.J. et al. (2018b), Highly Active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4, Small, 14(16): 1704049, https://doi.org/10.1002/smll.201704049
36. Ma H. et al. (2020), Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study, Applied Surface Science, 512: 145588, https://doi.org/10.1016/j.apsusc.2020.145588
37. Ma H., Shen Z., Ben S. (2018), Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water, Journal of Colloid and Interface Science, 517: 204–212, https://doi.org/10.1016/j.jcis.2017.11.013
38. Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. (2010), Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105: 136805, https://doi.org/10.1103/PhysRevLett.105.136805
39. Mao B., Guo D., Qin J., Meng T., Wang X., Cao M. (2018), Solubility-parameter-guided solvent selection to initiate Ostwald ripening for interior space-tunable structures with architecture-dependent electrochemical performance, Angewandte Chemie International Edition, 57(2): 446–450, https://doi.org/10.1002/anie.201710378
40. Mittal H., Raza M., Khanuja M. (2023), Liquid phase exfoliation of MoSe2: Effect of solvent on morphology, edge confinement, bandgap and number of layers study, MethodsX, 11: 102409, https://doi.org/10.1016/j.mex.2023.102409
41. Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. (2013), Liquid exfoliation of layered materials, Science, 340(6139): 1226419, https://doi.org/10.1126/science.1226419
42. Novoselov K.S. et al. (2004), Electric field effect in atomically thin carbon films, Science, 306(5696): 666–669, https://doi.org/10.1126/science.1102896
43. Occhiuzzi J., Politano G.G., D’Olimpio G., Politano A. (2023), The quest for green solvents for the sustainable production of nanosheets of two-dimensional (2D) materials, a key issue in the roadmap for the ecology transition in the flatland, Molecules, 28(3): 1484, https://doi.org/10.3390/molecules28031484
44. O’Neill A., Khan U., Coleman J.N. (2012), Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size, Chemistry of Materials, 24(12): 2414–2421, https://doi.org/10.1021/cm301515z
45. O’Neill A., Khan U., Nirmalraj P.N., Boland J., Coleman J.N. (2011), Graphene dispersion and exfoliation in low boiling point solvents, The Journal of Physical Chemistry C, 115(13): 5422–5428, https://doi.org/10.1021/jp110942e
46. Patel A.B. et al. (2019), Electrophoretically deposited MoSe2/WSe2 heterojunction from ultrasonically exfoliated nanocrystals for enhanced electrochemical photoresponse, ACS Applied Materials & Interfaces, 11(4): 4093–4102, https://doi.org/10.1021/acsami.8b18177
47. Pozzati M. et al. (2024), Systematic investigation on the surfactant-assisted liquid-phase exfoliation of MoS2 and WS2 in water for sustainable 2D material inks, physica status solidi (RRL) – Rapid Research Letters, 18(9): 2400039, https://doi.org/10.1002/pssr.202400039
48. Prabukumar C., Sadiq M.M.J., Bhat D.K., Bhat K.U. (2018), Effect of solvent on the morphology of MoS2 nanosheets prepared by ultrasonication-assisted exfoliation, AIP Conference Proceedings, 1943: 020084, https://doi.org/10.1063/1.5029660
49. Qiao W. et al. (2014), Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets, RSC Advances, 4(92): 50981–50987, https://doi.org/10.1039/C4RA09001B
50. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. (2011), Single-layer MoS2 transistors, Nature Nanotechnology, 6: 147–150, https://doi.org/10.1038/nnano.2010.279
51. Rafi R., Rahulan K.M., Flower N.A.L., Abith M., Chidambaram S.G.T., Rajendran A.S. (2024), Optical limiting performance of MoS2 nanosheets exfoliated via liquid-phase sonication: Implications for laser shielding, ACS Applied Nano Materials, 7(10): 11097–11106, https://doi.org/10.1021/acsanm.3c06096
52. Sethulekshmi A.S., Jacob F.P., Joseph K., Aprem A.S., Sisupal S.B., Saritha A. (2024), Biomaterials assisted 2D materials exfoliation: Reinforcing agents for polymer matrices, European Polymer Journal, 210: 112943, https://doi.org/10.1016/j.eurpolymj.2024.112943
53. Sheldon R.A. (2019), The greening of solvents: Towards sustainable organic synthesis, Current Opinion in Green and Sustainable Chemistry, 18: 13–19, https://doi.org/10.1016/j.cogsc.2018.11.006
54. Smith R.J. et al. (2011), Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Advanced Materials, 23(34): 3944–3948, https://doi.org/10.1002/adma.201102584
55. Synnatschke K. et al. (2019), Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides, Chemistry of Materials, 31(24): 10049–10062, https://doi.org/10.1021/acs.chemmater.9b02905
56. Taghavi N.S., Afzalzadeh R. (2021), The effect of sonication parameters on the thickness of the produced MoS2 nano-flakes, Archives of Acoustics, 46: 31–40, https://doi.org/10.24425/aoa.2021.136558
57. Wang G.-X., Bao W.-J., Wang J., Lu Q.-Q., Xia X.-H. (2013), Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode, Electrochemistry Communications, 35: 146–148, https://doi.org/10.1016/j.elecom.2013.08.021
58. Wu X., Wang Y.-h., Li P.-l., Xiong Z.-z. (2020), Research status of MoSe2 and its composites: A review, Superlattices and Microstructures, 139: 106388, https://doi.org/10.1016/j.spmi.2020.106388
59. Xiao D., Liu G.-B., Feng W., Xu X., Yao W. (2012), Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Physical Review Letters, 108: 196802, https://doi.org/10.1103/PhysRevLett.108.196802
60. Xu X. et al. (2021), Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2, Science, 372(6538): 195–200, https://doi.org/10.1126/science.abf5825
61. Xu X. et al. (2024), High-Performance flexible broadband photoelectrochemical photodetector based on molybdenum telluride, Small, 20(27): 2308590, https://doi.org/10.1002/smll.202308590
62. Yan Z.Y. et al. (2018), MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at 3 μm, Optics & Laser Technology, 100: 261–264, https://doi.org/10.1016/j.optlastec.2017.10.012
63. Yang Q., He Y., Fan Y., Li F., Chen X. (2017), Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution, Journal of Materials Science: Materials in Electronics, 28: 7413–7418, https://doi.org/10.1007/s10854-017-6430-8
64. Yu H. et al. (2017), Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano, 11: 12001–12007, https://doi.org/10.1021/acsnano.7b03819
65. Yuan Z., Yang C., Gao H., Qin W., Meng F. (2021), High response formic acid gas sensor based on MoS2 nanosheets, IEEE Transactions on Nanotechnology, 20: 177–184, https://doi.org/10.1109/TNANO.2021.3059622
66. Zhang S.-L., Choi H.-H., Yue H.-Y., Yang W.-C. (2014), Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor, Current Applied Physics, 14(3): 264–268, https://doi.org/10.1016/j.cap.2013.11.031
67. Zhao G., Wu Y., Shao Y., Hao X. (2016), Large-quantity and continuous preparation of two-dimensional nanosheets, Nanoscale, 8(10): 5407–5411, https://doi.org/10.1039/C5NR07950K
68. Zhou K.-G., Mao N.-N., Wang H.-X., Peng Y., Zhang H.-L. (2011), A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues, Angewandte Chemie International Edition, 50(46): 10839–10842, https://doi.org/10.1002/anie.201105364
2. Ahmad H. et al. (2021), Generation of four-wave mixing in molybdenum ditelluride (MoTe2)-deposited side-polished fibre, Journal of Modern Optics, 68: 425–432, https://doi.org/10.1080/09500340.2021.1908636
3. Akeredolu B.J. et al. (2024), Improved liquid phase exfoliation technique for the fabrication of MoS2/graphene heterostructure-based photodetector, Heliyon, 10(3): e24964, https://doi.org/10.1016/j.heliyon.2024.e24964
4. Backes C. et al. (2017), Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chemistry of Materials, 29: 243–255, https://doi.org/10.1021/acs.chemmater.6b03335
5. Barwich S., Khan U., Coleman J.N. (2013), A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration, The Journal of Physical Chemistry C, 117(37): 19212–19218, https://
doi.org/10.1021/jp4047006.
6. Capello C., Fischer U., Hungerbuhler K. (2007), What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chemistry, 9: 927–934, https://doi.org/10.1039/B617536H
7. Chen X. et al. (2019), Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors, Nanotechnology, 30: 445503, https://doi.org/10.1088/1361-6528/ab35ec
8. Ciesielski A., Samori P. (2014), Graphene via sonication assisted liquid-phase exfoliation, Chemical Society Reviews, 43(1): 381–398, https://doi.org/10.1039/C3CS60217F
9. Coleman J.N. (2013), Liquid exfoliation of defect-free graphene, Accounts of Chemical Research, 46(1): 14–22, https://doi.org/10.1021/ar300009f
10. Coleman J.N. et al. (2011), Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331(6017): 568–571, https://doi.org/10.1126/science.1194975
11. Cunningham G. et al. (2012), Solvent Exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano, 6(4): 3468–3480, https://doi.org/10.1021/nn300503e
12. Forsberg V. et al. (2016), Exfoliated MoS2 in water without additives, PLOS ONE, 11(4): e0154522, https://doi.org/10.1371/journal.pone.0154522
13. Gholamvand Z. et al. (2016), Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst, Nanoscale, 8: 5737–5749, https://doi.org/10.1039/C5NR08553E
14. Griffin A. et al. (2020), Effect of surfactant choice and concentration on the dimensions and yield of liquid-phase-exfoliated nanosheets, Chemistry of Materials, 32(7): 2852–2862, https://doi.org/10.1021/acs.chemmater.9b04684
15. Gupta A., Arunachalam V., Vasudevan S. (2016), Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water, The Journal of Physical Chemistry Letters, 7(23): 4884–4890, https://doi.org/10.1021/acs.jpclett.6b02405
16. Gutierrez M., Henglein A. (1989), Preparation of colloidal semiconductor solutions of MoS2 and WSe2 via sonication, Ultrasonics, 27(5): 259–261, https://doi.org/10.1016/0041-624X(89)90066-8
17. Halim U. et al. (2013), A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction, Nature Communications, 4: 2213, https://doi.org/10.1038/ncomms3213
18. Han C. et al. (2023), Theoretical and experimental investigations on sub-nanosecond KTP-OPO pumped by a hybrid Q-switched laser with AOM and MoTe2 saturable absorber, Optics & Laser Technology, 167: 109760, https://doi.org/10.1016/j.optlastec.2023.109760
19. Hanlon D. et al. (2015), Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nature Communications, 6: 8563, https://doi.org/10.1038/ncomms9563
20. Harvey A. et al. (2017), Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand, 2D Materials, 4: 025054, https://doi.org/10.1088/2053-1583/aa641a
21. Hau H.H. et al. (2021), Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets, Sensors and Actuators A: Physical, 332(Part 1): 113137, https://doi.org/10.1016/j.sna.2021.113137
22. Hu J., Zhou F., Wang J., Cui F., Quan W., Zhang Y. (2023), Chemical vapor deposition syntheses of wafer-scale 2D transition metal dichalcogenide films toward next-generation integrated circuits related applications, Advanced Functional Materials, 33(40): 2303520, https://doi.org/10.1002/adfm.202303520
23. Huang C., Zhou W., Guan W., Ye N. (2024), Molybdenum disulfide nanosheet induced reactive oxygen species for high-efficiency luminol chemiluminescence, Analytica Chimica Acta, 1295: 342324, https://doi.org/10.1016/j.aca.2024.342324
24. Jin X.-F. et al. (2020), Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing, Sensors and Actuators A: Physical, 316: 112388, https://doi.org/10.1016/j.sna.2020.112388
25. Kajbafvala M., Farbod M. (2018), Effective size selection of MoS2 nanosheets by a novel liquid cascade centrifugation: Influences of the flakes dimensions on electrochemical and photoelectrochemical applications, Journal of Colloid and Interface Science, 527: 159–171, https://doi.org/10.1016/j.jcis.2018.05.026
26. Khan U., O’Neill A., Porwal H., May P., Nawaz K., Coleman J.N. (2012), Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation, Carbon, 50(2): 470–475, https://doi.org/10.1016/j.carbon.2011.09.001
27. Khan U., Porwal H., O’Neill A., Nawaz K., May P., Coleman J.N. (2011), Solvent-exfoliated graphene at extremely high concentration, Langmuir, 27(15): 9077–9082, https://doi.org/10.1021/la201797h
28. Kim J. et al. (2015), Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control, Nature Communications, 6: 8294, https://doi.org/10.1038/ncomms9294
29. Kumar B.A., Elangovan, T., Raju, K., Ramalingam G., Sambasivam S., Alam M.M. (2023), Green solvent exfoliation of few layers 2D-MoS2 nanosheets for efficient energy harvesting and storage application, Journal of Energy Storage, 65: 107336, https://doi.org/10.1016/j.est.2023.107336
30. Lee H. et al. (2020), Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing, Nano Research, 13: 2726–2734, https://doi.org/10.1007/s12274-020-2916-4
31. Li X., Wang W., Zhang L., Jiang D., Zheng Y. (2015), Water-exfoliated MoS2 catalyst with enhanced photoelectrochemical activities, Catalysis Communications, 70: 53–57, https://doi.org/10.1016/j.catcom.2015.07.024
32. Li Z. et al. (2020), Mechanisms of liquid-phase exfoliation for the production of graphene, ACS Nano, 14: 10976–10985, https://doi.org/10.1021/acsnano.0c03916
33. Liang Y. et al. (2020), Nano-seconds pulsed Er:Lu2O3 laser using molybdenum ditelluride saturable absorber, Optics & Laser Technology, 121: 105791, https://doi.org/10.1016/j.optlastec.2019.105791
34. Liu Y.T., Zhu X.D., Xie X.M. (2018a), Direct exfoliation of high-quality, atomically thin MoSe2 layers in water, Advanced Sustainable Systems, 2(1): 1700107, https://doi.org/10.1002/adsu.201700107
35. Liu X.J. et al. (2018b), Highly Active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4, Small, 14(16): 1704049, https://doi.org/10.1002/smll.201704049
36. Ma H. et al. (2020), Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study, Applied Surface Science, 512: 145588, https://doi.org/10.1016/j.apsusc.2020.145588
37. Ma H., Shen Z., Ben S. (2018), Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water, Journal of Colloid and Interface Science, 517: 204–212, https://doi.org/10.1016/j.jcis.2017.11.013
38. Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. (2010), Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105: 136805, https://doi.org/10.1103/PhysRevLett.105.136805
39. Mao B., Guo D., Qin J., Meng T., Wang X., Cao M. (2018), Solubility-parameter-guided solvent selection to initiate Ostwald ripening for interior space-tunable structures with architecture-dependent electrochemical performance, Angewandte Chemie International Edition, 57(2): 446–450, https://doi.org/10.1002/anie.201710378
40. Mittal H., Raza M., Khanuja M. (2023), Liquid phase exfoliation of MoSe2: Effect of solvent on morphology, edge confinement, bandgap and number of layers study, MethodsX, 11: 102409, https://doi.org/10.1016/j.mex.2023.102409
41. Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. (2013), Liquid exfoliation of layered materials, Science, 340(6139): 1226419, https://doi.org/10.1126/science.1226419
42. Novoselov K.S. et al. (2004), Electric field effect in atomically thin carbon films, Science, 306(5696): 666–669, https://doi.org/10.1126/science.1102896
43. Occhiuzzi J., Politano G.G., D’Olimpio G., Politano A. (2023), The quest for green solvents for the sustainable production of nanosheets of two-dimensional (2D) materials, a key issue in the roadmap for the ecology transition in the flatland, Molecules, 28(3): 1484, https://doi.org/10.3390/molecules28031484
44. O’Neill A., Khan U., Coleman J.N. (2012), Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size, Chemistry of Materials, 24(12): 2414–2421, https://doi.org/10.1021/cm301515z
45. O’Neill A., Khan U., Nirmalraj P.N., Boland J., Coleman J.N. (2011), Graphene dispersion and exfoliation in low boiling point solvents, The Journal of Physical Chemistry C, 115(13): 5422–5428, https://doi.org/10.1021/jp110942e
46. Patel A.B. et al. (2019), Electrophoretically deposited MoSe2/WSe2 heterojunction from ultrasonically exfoliated nanocrystals for enhanced electrochemical photoresponse, ACS Applied Materials & Interfaces, 11(4): 4093–4102, https://doi.org/10.1021/acsami.8b18177
47. Pozzati M. et al. (2024), Systematic investigation on the surfactant-assisted liquid-phase exfoliation of MoS2 and WS2 in water for sustainable 2D material inks, physica status solidi (RRL) – Rapid Research Letters, 18(9): 2400039, https://doi.org/10.1002/pssr.202400039
48. Prabukumar C., Sadiq M.M.J., Bhat D.K., Bhat K.U. (2018), Effect of solvent on the morphology of MoS2 nanosheets prepared by ultrasonication-assisted exfoliation, AIP Conference Proceedings, 1943: 020084, https://doi.org/10.1063/1.5029660
49. Qiao W. et al. (2014), Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets, RSC Advances, 4(92): 50981–50987, https://doi.org/10.1039/C4RA09001B
50. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. (2011), Single-layer MoS2 transistors, Nature Nanotechnology, 6: 147–150, https://doi.org/10.1038/nnano.2010.279
51. Rafi R., Rahulan K.M., Flower N.A.L., Abith M., Chidambaram S.G.T., Rajendran A.S. (2024), Optical limiting performance of MoS2 nanosheets exfoliated via liquid-phase sonication: Implications for laser shielding, ACS Applied Nano Materials, 7(10): 11097–11106, https://doi.org/10.1021/acsanm.3c06096
52. Sethulekshmi A.S., Jacob F.P., Joseph K., Aprem A.S., Sisupal S.B., Saritha A. (2024), Biomaterials assisted 2D materials exfoliation: Reinforcing agents for polymer matrices, European Polymer Journal, 210: 112943, https://doi.org/10.1016/j.eurpolymj.2024.112943
53. Sheldon R.A. (2019), The greening of solvents: Towards sustainable organic synthesis, Current Opinion in Green and Sustainable Chemistry, 18: 13–19, https://doi.org/10.1016/j.cogsc.2018.11.006
54. Smith R.J. et al. (2011), Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Advanced Materials, 23(34): 3944–3948, https://doi.org/10.1002/adma.201102584
55. Synnatschke K. et al. (2019), Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides, Chemistry of Materials, 31(24): 10049–10062, https://doi.org/10.1021/acs.chemmater.9b02905
56. Taghavi N.S., Afzalzadeh R. (2021), The effect of sonication parameters on the thickness of the produced MoS2 nano-flakes, Archives of Acoustics, 46: 31–40, https://doi.org/10.24425/aoa.2021.136558
57. Wang G.-X., Bao W.-J., Wang J., Lu Q.-Q., Xia X.-H. (2013), Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode, Electrochemistry Communications, 35: 146–148, https://doi.org/10.1016/j.elecom.2013.08.021
58. Wu X., Wang Y.-h., Li P.-l., Xiong Z.-z. (2020), Research status of MoSe2 and its composites: A review, Superlattices and Microstructures, 139: 106388, https://doi.org/10.1016/j.spmi.2020.106388
59. Xiao D., Liu G.-B., Feng W., Xu X., Yao W. (2012), Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Physical Review Letters, 108: 196802, https://doi.org/10.1103/PhysRevLett.108.196802
60. Xu X. et al. (2021), Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2, Science, 372(6538): 195–200, https://doi.org/10.1126/science.abf5825
61. Xu X. et al. (2024), High-Performance flexible broadband photoelectrochemical photodetector based on molybdenum telluride, Small, 20(27): 2308590, https://doi.org/10.1002/smll.202308590
62. Yan Z.Y. et al. (2018), MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at 3 μm, Optics & Laser Technology, 100: 261–264, https://doi.org/10.1016/j.optlastec.2017.10.012
63. Yang Q., He Y., Fan Y., Li F., Chen X. (2017), Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution, Journal of Materials Science: Materials in Electronics, 28: 7413–7418, https://doi.org/10.1007/s10854-017-6430-8
64. Yu H. et al. (2017), Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano, 11: 12001–12007, https://doi.org/10.1021/acsnano.7b03819
65. Yuan Z., Yang C., Gao H., Qin W., Meng F. (2021), High response formic acid gas sensor based on MoS2 nanosheets, IEEE Transactions on Nanotechnology, 20: 177–184, https://doi.org/10.1109/TNANO.2021.3059622
66. Zhang S.-L., Choi H.-H., Yue H.-Y., Yang W.-C. (2014), Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor, Current Applied Physics, 14(3): 264–268, https://doi.org/10.1016/j.cap.2013.11.031
67. Zhao G., Wu Y., Shao Y., Hao X. (2016), Large-quantity and continuous preparation of two-dimensional nanosheets, Nanoscale, 8(10): 5407–5411, https://doi.org/10.1039/C5NR07950K
68. Zhou K.-G., Mao N.-N., Wang H.-X., Peng Y., Zhang H.-L. (2011), A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues, Angewandte Chemie International Edition, 50(46): 10839–10842, https://doi.org/10.1002/anie.201105364

