Review of Microphone-Based Contactless Vital Signs Monitoring Systems

Downloads

Authors

  • Abiodun Ernest AMORAN Department of Measurements and Control Systems, Silesian University of Technology, Poland ORCID ID 0000-0002-4553-3797
  • Dariusz BISMOR Department of Measurements and Control Systems, Silesian University of Technology, Poland ORCID ID 0000-0003-4758-3592

Abstract

Microphones are sensors common to a variety of the Internet of Things (IoT) and healthcare applications. Many examples have proved that microphones can be useful in detecting, e.g., abnormal breathing rates. There are already applications that serve this purpose, e.g., respiratory acoustic monitoring, ResApp, etc. Breath signal was studied using a range of technologies and sensors, including the most common: radar, accelerometer, wearables, and so on. The majority of these sensors are attached to the body of a monitored person. However, the emergence of COVID-19 has drawn particular attention to the importance of using non-contact technologies for monitoring breath signals and other vital signs. This paper presents a comprehensive review of microphone-based non-contact vital sign monitoring, including the methodologies and concepts, while identifying new research gaps and opportunities for the future studies.

Keywords:

beamforming, microphone, machine learning, vital signs

References


  1. Aarts R.M. (2019), Acoustical patient monitoring using a sound classifier and a microphone, US Patent 10,269,228.

  2. Abbasi-Kesbi R., Valipour A., Imani K. (2018), Cardiorespiratory system monitoring using a developed acoustic sensor, Healthcare Technology Letters, 5(1): 7–12, https://doi.org/10.1049/htl.2017.0012

  3. Abed A., Cordon E., Warren N., Sanders D., Patel M., Liya D. (2022), Digital microphone with reduced processing noise, US Patent 11,438,682.

  4. Acharya J., Basu A. (2020), Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning, IEEE Transactions on Biomedical Circuits and Systems, 14(3): 535–544, https://doi.org/10.1109/TBCAS.2020.2981172

  5. Al-Ali A., Lee S.U.K. (2012), Physiological acoustic monitoring system, US Patent App. 13/675,014, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013056141

  6. Alexandridis A., Mouchtaris A. (2017), Multiple sound source location estimation in wireless acoustic sensor networks using DOA estimates: The dataassociation problem, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(2): 342–356, https://doi.org/10.1109/TASLP.2017.2772831

  7. Alqudaihi K.S. et al. (2021), Cough sound detection and diagnosis using artificial intelligence techniques: Challenges and opportunities, IEEE Access, 9: 102327–102344, https://doi.org/10.1109/ACCESS.2021.3097559

  8. Arenas-Garcia J., Azpicueta-Ruiz L.A., Silva M.T.M., Nascimento V.H., Sayed A.H. (2021), Combinations of adaptive filters: Performance and convergence properties, IEEE Signal Processing Magazine, 33: 120–140, https://doi.org/10.1109/MSP.2015.2481746

  9. Artemyev M., Churikova M., Grinenko M., Perepelkina O. (2020), Robust algorithm for remote photoplethysmography in realistic conditions, Digital Signal Processing, 104: 102737, https://doi.org/10.1016/j.dsp.2020.102737

  10. Ashraf W., Moussavi Z. (2024), Design and analysis of a contact piezo microphone for recording tracheal breathing sounds, Sensors, 24(17): 5511, https://doi.org/10.3390/s24175511

  11. Atkins A., Cohen I., Benesty J. (2021), Adaptive line enhancer for nonstationary harmonic noise reduction, Computer Speech and Language, 70: 101245, https://doi.org/10.1016/j.csl.2021.101245

  12. Barany L.P. (1993), Ultrasonic non-contact motion monitoring system, US Patent 5,220,922.

  13. Balgemann T.W., Pedersen S.C., Pessin J.M., Shumard B.R., Sutter L.L., Perkofski R.J. (2023), Microphone with adjustable signal processing, US Patent App. 18/197,416.

  14. Beckmann P. (2017), How digital signal processing can enhance the utility and performance of microphones, https://21088554.fs1.hubspotusercontent-na1.net/hubfs/21088554/digital microphone processingpaper%20(1).pdf (access: 29.05.2024).

  15. Boccignone G., D’Amelio A., Ghezzi O., Grossi G., Lanzarotti R. (2023), An evaluation of non-contact photoplethysmography-based methods for remote respiratory rate estimation, Sensors, 23(7): 3387, https://doi.org/10.3390/s23073387

  16. Branson R.D., Rodriquez D. Jr. (2023), COVID-19 essons learned: Response to the anticipated ventilator shortage, Respiratory Care, 68(1): 129–150, https://doi.org/10.4187/respcare.10676

  17. Celik N., Gagarin R., Youn H., Iskander M.F. (2011), A noninvasive microwave sensor and signal processing technique for continuous monitoring of vital signs, IEEE Antennas and Wireless Propagation Letters, 10: 286–289, https://doi.org/10.1109/LAWP.2011.2132690

  18. Chara A., Zhao T.,Wang X., Mao S. (2023), Respiratory biofeedback using acoustic sensing with smartphones, Smart Health, 28: 100387, https://doi.org/10.1016/j.smhl.2023.100387

  19. Chauhan J., Hu Y., Seneviratne S., Misra A., Seneviratne A., Lee Y. (2017), BreathPrint: Breathing acoustics-based user authentication, [in:] Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp. 278–291, https://doi.org/10.1145/3081333.3081355

  20. Chen Z., Li Z., Wang S., Yin F. (2015), A microphone position calibration method based on combination of acoustic energy decay model and TDOA for distributed microphone array, Applied Acoustics, 95: 13–19, https://doi.org/10.1016/j.apacoust.2015.02.013

  21. Dafna E., Rosenwein T., Tarasiuk A., Zigel Y. (2015), Breathing rate estimation during sleep using audio signal analysis, [in:] 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5981–5984, https://doi.org/10.1109/EMBC.2015.7319754

  22. Dei D. et al. (2009), Non-contact detection of breathing using a microwave sensor, Sensors, 9(4): 2574–2585, https://doi.org/10.3390/s90402574

  23. Dey N., Ashour A.S. (2018), Direction of Arrival Estimation and Localization of Multi-Speech Sources, Springer, https://doi.org/10.1007/978-3-319-73059-2

  24. Doclo S., Kellermann W., Makino S., Nordholm S.E. (2015), Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones, IEEE Signal Processing Magazine, 32(2): 18–30, https://doi.org/10.1109/MSP.2014.2366780

  25. Doheny E.P. et al. (2023), Estimation of respiratory rate and exhale duration using audio signals recorded by smartphone microphones, Biomedical Signal Processing and Control, 80(Part 1): 104318, https://doi.org/10.1016/j.bspc.2022.104318

  26. Doyle D.J. (2019), Acoustical respiratory monitoring in the time domain, The Open Anesthesia Journal, 13, https://doi.org/10.2174/2589645801913010144

  27. Edanami K. et al. (2022), Remote sensing of vital signs by medical radar time-series signal using cardiac peak extraction and adaptive peak detection algorithm: Performance validation on healthy adults and application to neonatal monitoring at an NICU, Computer Methods and Programs in Biomedicine, 226: 107163, https://doi.org/10.1016/j.cmpb.2022.107163

  28. Fang B., Lane N.D., Zhang M., Boran A., Kawsar F. (2016), BodyScan: Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring, [in:] Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, pp. 97–110, http://doi.org/10.1145/2906388.2906411

  29. Fang K. et al. (2023), IDRes: Identity-based respiration monitoring system for digital twins enabled healthcare, IEEE Journal on Selected Areas in Communications, 41(10): 3333–3348, https://doi.org/10.1109/JSAC.2023.3310095

  30. Ferrante G., Licari A., Marseglia G., La Grutta S. (2020), Artificial intelligence as an emerging diagnostic approach in paediatric pulmonology, Respirology, 25(10): 1029–1030, https://doi.org/10.1111/resp.13842

  31. Fischer E., Puder H. (2012), Method for reducing interferences of a directional microphone, US Patent 8,135,142.

  32. Fraden J. (2014), Non-contact medical thermometer with stray radiation shielding, US Patent 8,834,019.

  33. Fukuda T., Watanabe S., Matsumoto H., Tsuji H. (2018), Microphone array, monitoring system, and sound pickup setting method, US Patent 9,860,635.

  34. Garzotto F. et al. (2020), COVID-19: Ensuring our medical equipment can meet the challenge, Expert Review of Medical Devices, 17(6): 483–489, https://doi.org/10.1080/17434440.2020.1772757

  35. Genova J.J. (1997), Non-invasive medical monitor system, US Patent 5,590,650.

  36. Gupta P., Wen H., Di Francesco L., Ayazi F. (2021), Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders, Scientific Reports, 11(1): 13427, https://doi.org/10.1038/s41598-021-92666-2

  37. Haase W.C., Haase Z.S., Young R.F., Monin P.E., McCarthy C.W., Sarles F.W. (2011), Non-contact biometric monitor, US Patent App. 13/034,394.

  38. Hall T. et al. (2015), A phased array non-contact vital signs sensor with automatic beam steering, [in:] 2015 IEEE MTT-S International Microwave Symposium, pp. 1–4, https://doi.org/10.1109/MWSYM.2015.7166973

  39. Han L. et al. (2023), Health monitoring via heart, breath, and Korotkoff sounds by wearable piezoelectret patches, Advanced Science, 10(28): 2301180, https://doi.org/10.1002/advs.202301180

  40. Hashim H.A., Ahmed N.M., Shabeeb A.G. (2023), Infant heart rate estimation based on non-contact UV photoplethysmography, Indonesian Journal of Electrical Engineering and Computer Science, 31(1): 180–188, http://doi.org/10.11591/ijeecs.v31.i1.pp180-188

  41. Henry M. (2023), An ultra-precise fast Fourier transform, Measurement, 220: 113372, https://doi.org/10.1016/j.measurement.2023.113372

  42. Hoctor R.T., Thomenius K.E., Dentinger A.M. (2008), Method and apparatus for ultrasonic continuous, non-invasive blood pressure monitoring, US Patent 7,425,199.

  43. Hsu G.-S.J., Xie R.-C., Ambikapathi A.M., Chou K.-J. (2020), A deep learning framework for heart rate estimation from facial videos, Neurocomputing, 417: 155–166, https://doi.org/10.1016/j.neucom.2020.07.012

  44. Huang B., Lin C.-L., Chen W., Juang C.-F., Wu X. (2021), A novel one-stage framework for visual pulse rate estimation using deep neural networks, Biomedical Signal Processing and Control, 66: 102387, https://doi.org/10.1016/j.bspc.2020.102387

  45. Ipenza S.C., Masiero B.S. (2018), Microphone array processing of pulse-density modulated bitstreams, [in:] 28th Meeting of the Brazilian Acoustics Society October 3 to 5, 2018, Porto Alegre – RS, 6: 7, https://doi.org/10.17648/sobrac-87156

  46. Islam B. et al. (2021), BreathTrack: Detecting regular breathing phases from unannotated acoustic data captured by a smartphone, [in:] Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3): 1–22, https://doi.org/10.1145/3478123

  47. Islam S.M.M., Yavari E., Rahman A., Lubecke V.M., Boric-Lubecke O. (2019), Multiple subject respiratory pattern recognition and estimation of direction of arrival using phase-comparison monopulse radar, [in:] 2019 IEEE Radio and Wireless Symposium (RWS), pp. 1–4, https://doi.org/10.1109/RWS.2019.8714272

  48. Jahanshahi P., Wei Q., Jie Z., Zalnezhad E. (2018), Designing a non-invasive surface acoustic resonator for ultra-high sensitive ethanol detection for an on-the-spot health monitoring system, Biotechnology and Bioprocess Engineering, 23: 394–404, https://doi.org/10.1007/s12257-017-0432-5

  49. Jain A.D., Hera C.M. (2019), Noise reduction using machine learning, Patent No. 10,580,430, https://patents.google.com/patent/WO2019079713A1/fr

  50. Joshi M., Moadi A.-K., Theilmann P., Fathy A.E. (2023), Compact millimeter wave radar for vital sign detection: A comprehensive study, [in:] 2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), pp. 114–117, https://doi.org/10.1109/TELSIKS57806.2023.10316015

  51. Kanamori T., Terada Y. (2016), Directional microphone device, acoustic signal processing method, and program, US Patent 9,264,797.

  52. Katoh M., Kanazawa T., Abe Y., Sun G., Matsui T. (2023), Development of a non-contact 15-second paediatric respiratory rate monitor using microwave radar and its clinical application, Acta Paediatrica, 112(3): 493–495, https://doi.org/10.1111/apa.16585

  53. Kavsao˘glu A.R., Sehirli E. (2023), A novel study to classify breath inhalation and breath exhalation using audio signals from heart and trachea, Biomedical Signal Processing and Control, 80(part 1): 104220, https://doi.org/10.1016/j.bspc.2022.104220

  54. Khatkhate A.M., Raut V., Jadhav M., Alva S., Vichare K., Nadkarni A. (2022), Identification of basic respiratory patterns for disease-related symptoms through a microphone device, Journal of Engineering Research and Sciences, 1(6): 36–44, https://doi.org/10.55708/js0106005

  55. Khodaie M., Nafisi V.R., Moghadam F.F. (2021), Design and implementation of an apparatus for respiratory parameters estimation based on acoustic methods, [in:] 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME), pp. 15–21, https://doi.org/10.1109/ICBME54433.2021.9750286

  56. Khong W.L., Mariappan M. (2019), The evolution of heart beat rate measurement techniques from contact based photoplethysmography to noncontact based photoplethysmography imaging, [in:] 2019 IEEE International Circuits and Systems Symposium (ICSyS), pp. 1–4, https://doi.org/10.1109/ICSyS47076.2019.8982534

  57. Kranjec J., Beguš S., Geršak G., Drnovšek J. (2014), Non-contact heart rate and heart rate variability measurements: A review, Biomedical Signal Processing and Control, 13: 102–112, https://doi.org/10.1016/j.bspc.2014.03.004

  58. Lee C.S., Li M., Lou Y., Abbasi Q.H., Imran M. 2023), An acoustic system of sound acquisition and image generation for frequent and reliable lung function assessment, IEEE Sensors Journal, 24(3): 3731–3747, https://doi.org/10.1109/JSEN.2023.3344136

  59. Levy A., Gannot S., Habets E.A.P. (2010), Multiple-hypothesis extended particle filter for acoustic source localization in reverberant environments, IEEE Transactions on Audio, Speech, and Language Processing, 19(6): 1540–1555, https://doi.org/10.1109/TASL.2010.2093517

  60. Li C., Qian Q. (2024), A deep learning-based animation video image data anomaly detection and recognition algorithm, Journal of Organizational and End User Computing (JOEUC), 36(1): 1–25, https://doi.org/10.4018/JOEUC.345929

  61. Liang H. et al. (2023), Wearable and multifunctional self-mixing microfiber sensor for human health monitoring, IEEE Sensors Journal, 23(3): 2122–2127, https://doi.org/10.1109/JSEN.2022.3225196

  62. Liu J., Li D., Wang L., Zhang F., Xiong J. (2022), Enabling contact-free acoustic sensing under device motion, [in:] Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(3): 128, https://doi.org/10.1145/3550329

  63. Liu Y., Tong F., Zhong S., Hong Q., Li L. (2021), Reverberation aware deep learning for environment tolerant microphone array DOA estimation, Applied Acoustics, 184: 108337, https://doi.org/10.1016/j.apacoust.2021.108337

  64. Llorca-Bofi J., Heck J., Dreier C., Vorlaender M. (2024), Urban background sound recordings for virtual acoustics under various weather conditions, The Journal of the Acoustical Society of America, 155(3 Supplement): A178, https://doi.org/10.1121/10.0027230

  65. LoMauro A., Colli A., Colombo L., Aliverti A. (2022), Breathing patterns recognition: A functional data analysis approach, Computer Methods and Programs in Biomedicine, 217: 106670, https://doi.org/10.1016/j.cmpb.2022.106670

  66. Lv W., He W., Lin X., Miao J. (2021), Non-contact monitoring of human vital signs using FMCW millimeter wave radar in the 120 GHz band, Sensors, 21(8): 2732, https://doi.org/10.3390/s21082732

  67. Lyu W., Chen S., Tan F., Yu C. (2022), Vital signs monitoring based on interferometric fiber optic sensors, Photonics, 9(2): 50, https://doi.org/10.3390/photonics9020050

  68. Massaroni C., Nicolò A., Sacchetti M., Schena E. (2021), Contactless methods for measuring respiratory rate: A review, IEEE Sensors Journal, 21(11): 12821–12839, https://doi.org/10.1109/JSEN.2020.3023486

  69. Mathworks (n.d.), Conventional and adaptive beamformer, https://www.mathworks.com/help/phased/ug/conventional-and-adaptive-beamformers.html (access: 4.06.2024).

  70. Mercuri M. et al. (2018), A direct phase-tracking Doppler radar using wavelet independent component analysis for non-contact respiratory and heart rate monitoring, IEEE Transactions on Biomedical Circuits and Systems, 12(3): 632–643, https://doi.org/10.1109/TBCAS.2018.2813013

  71. Meyer P., Elshamy S., Fingscheidt T. (2020), Multichannel speaker interference reduction using frequency domain adaptive filtering, EURASIP Journal on Audio, Speech, and Music Processing, 2020: 14, https://doi.org/10.1186/S13636-020-00180-6

  72. Nemcova A. et al. (2020), Monitoring of heart rate, blood oxygen saturation, and blood pressure using a smartphone, Biomedical Signal Processing and Control, 59: 101928, https://doi.org/10.1016/j.bspc.2020.101928

  73. Nongpiur R.C. (2018), Directional microphone device and signal processing techniques, Patent.

  74. Okamoto Y., Nguyen T.-V., Takahashi H., Takei Y., Okada H., Ichiki M. (2023), Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications, Scientific Reports, 13(1): 6503, https://doi.org/10.1038/s41598-023-33568-3

  75. Open Music Lab (2022), Electret microphones, http://www.openmusiclabs.com/learning/sensors/electret-microphones/index.html (access: 1.06.2024).

  76. Orlandic L., Teijeiro T., Alonso D.A. (2021), The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms, Scientific Data, 8: 156, https://doi.org/10.1038/s41597-021-00937-4

  77. Park D.Y., Lim H.Y., Min C.K. (2020), Directional microphone device, Patent.

  78. Paul V.-S., Hahn N., Hollebon J. (2023), Extraction of ambience sound from microphone array recordings for spatialisation, [in:] 2023 Immersive and 3D Audio: From Architecture to Automotive (I3DA), https://doi.org/10.1109/I3DA57090.2023.10289397

  79. Phokela K.K., Naik V. (2020), Use of smartphone’s headset microphone to estimate the rate of respiration, [in:] 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 64–69, https://doi.org/10.1109/COMSNETS48256.2020.9027297

  80. Picchio R. et al. (2019), Comparing accuracy of three methods based on the GIS environment for determining winching areas, Electronics, 8(1): 53, https://doi.org/10.3390/electronics8010053

  81. Pramono R.X.A., Imtiaz S., Rodriguez-Villegas E. (2019), Evaluation of features for classification of wheezes and normal respiratory sounds, PLoS ONE, 14(3): e0213659, https://doi.org/10.1371/journal.pone.0213659

  82. PreSonus (2022), What is a condenser microphone, https://www.presonus.com/blogs/technical/what-isa-condenser-microphone (access: 1.06.2024).

  83. Qian K., Wu C., Xiao F., Zheng Y., Zhang Y., Yang Z., Liu Y. (2018), Acousticcardiogram: Monitoring heartbeats using acoustic signals on smart devices, [in:] IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1574–1582, https://doi.org/10.1109/INFOCOM.2018.8485978

  84. Rangayyan R.M. [Ed.] (2015), Frequency domain characterization of signals and systems, [in:] Biomedical Signal Analysis, Wiley, pp. 349–395, https://doi.org/10.1002/9781119068129.ch6

  85. Renjini A., Swapna M.S., Raj V., Sankararaman S. (2021), Graph-based feature extraction and classification of wet and dry cough signals: A machine learning approach, Journal of Complex Networks, 9(6): cnab039, https://doi.org/10.1093/comnet/cnab039

  86. Rose B. (2022), An introduction to MEMS microphone arrays, https://www.sameskydevices.com/blog/an-introduction-to-mems-microphone-arrays (access: 31.05.2024).

  87. Roseline S.A., Saraf K., Sruti I.N.V.D. (2024), Intelligent human anomaly detection using LSTM autoencoders, [in:] 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), pp. 1–7, https://doi.org/10.1109/ACCAI61061.2024.10602454

  88. Ryu J., Hong S., Liang S., Pak S., Chen Q., Yan S. (2021), A measurement of illumination variation-resistant noncontact heart rate based on the combination of singular spectrum analysis and sub-band method, Computer Methods and Programs in Biomedicine, 200: 105824, https://doi.org/10.1016/j.cmpb.2020.105824

  89. Sabokrou M., Pourreza M., Li X., Fathy M., Zhao G. (2021), Deep-HR: Fast heart rate estimation from face video under realistic conditions, Expert Systems with Applications, 186: 115596, https://doi.org/10.1016/j.eswa.2021.115596

  90. Sakamoto T., Yamashita K. (2019), Noncontact measurement of autonomic nervous system activities based on heart rate variability using ultra-wideband array radar, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 4(3): 208–215, https://doi.org/10.1109/JERM.2019.2948827

  91. Savazzi S., Rampa V., Costa L., Kianoush S., Tolochenko D. (2020), Processing of body-induced thermal signatures for physical distancing and temperature screening, IEEE Sensors Journal, 21(13): 14168–14179, https://doi.org/10.1109/JSEN.2020.30 47143.

  92. Sharma P., Imtiaz S.A., Rodriguez-Villegas E. (2019), Acoustic sensing as a novel wearable approach for cardiac monitoring at the wrist, Scientific Reports, 9: 20079, https://doi.org/10.1038/s41598-019-55599-5

  93. Shih C., Tomita N., Lukic Y.X., Reguera Á.H., Fleisch E., Kowatsch T. (2019), Breeze: Smartphone-based acoustic real-time detection of breathing phases for a gamified biofeedback breathing training, [in:] Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(4): 1–30, https://doi.org/10.1145/3369835

  94. Shiozawa K., Ozawa K., Ise T. (2020), Noise suppression using a differential-type microphone array and two-dimensional amplitude and phase spectra, [in:] 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 46–51.

  95. Shokouhmand A., Eckstrom S., Gholami B., Tavassolian N. (2022), Camera-augmented non-contact vital sign monitoring in real time, IEEE Sensors Journal, 22(12): 11965–11978, https://doi.org/10.1109/JSEN.2022.3172559

  96. Smithard J. et al. (2017), An advanced multisensory acousto-ultrasonic structural health monitoring system: Development and aerospace demonstration, Materials, 10(7): 832, https://doi.org/10.3390/ma10070832

  97. Sun L., Luo C., Bai G., Gu C., Zhu X. (2022), Remote measurement of human breathing and heartbeat in large scene based on TX-RX joint beamforming, [in:] 2022 16th ICME International Conference on Complex Medical Engineering (CME), pp. 12–15, https://doi.org/10.1109/CME55444.2022.10063285

  98. Taghavirashidizadeh A., Sharifi F., Vahabi S.A., Hejazi A., SaghabTorbati M., Mohammed A.S. (2022), WTD-PSD: Presentation of novel feature extraction method based on discrete wavelet transformation and time-dependent power spectrum descriptors for diagnosis of Alzheimer’s disease, Computational Intelligence and Neuroscience, 2022: 9554768, https://doi.org/10.1155/2022/9554768

  99. Takenaka K., Ozawa K. (2022), Noise suppression system using deep learning for smart devices, [in:] 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), pp. 559–560, https://doi.org/10.1109/LifeTech53646.2022.9754759

  100. Taniguchi M., Kageyama T., Okamoto Y., Matsunaga T., Lee S.S. (2023), A vital sign monitoring system using a MEMS microphone for dog, [in:] 2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 70–73, https://doi.org/10.1109/NEMS57332.2023.10190878

  101. Tashev I., Acero A. (2006), Microphone array post-processor using instantaneous direction of arrival, [in:] Proceedings of International Workshop on Acoustic, Echo and Noise Control IWAENC 2006, https://www.microsoft.com/en-us/research/publication/microphone-array-post-processor-using-instantaneous-direction-of-arrival/

  102. Thakur D., Biswas S., Ho E.S.L., Chattopadhyay S. (2022), ConvAE-LSTM: Convolutional autoencoder long short-term memory network for smartphone-based human activity recognition, IEEE Access, 10: 4137–4156, https://doi.org/10.1109/ACCESS.2022.3140373

  103. Thomsen H., Du Y. (2020), Digital microphone noise attenuation, US Patent 10,559,293.

  104. Thundat T.G., Oden P.I., Datskos P.G. (2000), Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors, US Patent 6,050,722.

  105. Toa M., Whitehead A. (2019), Ultrasonic sensing basics. Application note, Texas Instruments, https://www.ti.com/lit/an/slaa907d/slaa907d.pdf (access: 30.05.2025).

  106. Tocci M. (2024), Smartphone history and evolution, Simple Texting, https://simpletexting.com/blog/where-have-we-come-since-the-first-smartphone/ (access: 3.04.2024).

  107. Todorović D. et al. (2015), Multilayer graphene condenser microphone, 2D Materials, 2(4): 045013, https://doi.org/10.1088/2053-1583/2/4/045013

  108. Tran D., Duong K., Bhowmik U.K. (2014), A VHDL based controller design for non-contact temperature and breathing sensors suitable for crib, [in:] 2014 IEEE International Conference on Bioinformatics and Bioengineering, 126–133, https://doi.org/10.1109/BIBE.2014.11

  109. Tsai T.C., Orav E.J., Jha A.K., Figueroa J.F. (2022), National estimates of increase in US mechanical ventilator supply during the COVID-19 pandemic, JAMA Network Open, 5(8): e2224853, https://doi.org/10.1001/jamanetworkopen.2022.24853

  110. Valipour A., Abbasi-Kesbi R. (2017), A heartbeat and respiration rate sensor based on phonocardiogram for healthcare applications, [in:] 2017 Iranian Conference on Electrical Engineering (ICEE), pp. 45–48, https://doi.org/10.1109/IranianCEE.2017.7985502

  111. Vincent K., Wang L., Liu W. (2023), Towards one-to-many respiration monitoring via dual-mode acoustic signals, IEEE Transactions on Consumer Electronics, 70(1): 2970–2978, https://doi.org/10.1109/TCE.2023.3321683

  112. Wahyu Y. et al. (2022), 24 GHz FMCW radar for non-contact respiratory detection, [in:] 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 752–755, https://doi.org/ 10.1109/ICITISEE57756.2022.10057704.

  113. Wan H., Shi S., Cao W., Wang W., Chen G. (2023), Multi-user room-scale respiration tracking using COTS acoustic devices, ACM Transactions on Sensor Networks, 19(4): 85, https://doi.org/10.1145/3594220

  114. Wang G., Zhang C., Chen X., Ji X., Xue J., Wang H. (2020), Bi-stream pose-guided region ensemble network for fingertip localization from stereo images, IEEE Transactions on Neural Networks and Learning Systems, 31(12): 5153–5165, https://doi.org/10.1109/TNNLS.2020.2964037

  115. Wang T. et al. (2023), MultiResp: Robust respiration monitoring for multiple users using acoustic signal, IEEE Transactions on Mobile Computing, 23(5): 3785–3801, https://doi.org/10.1109/TMC.2023.3279976

  116. Wang T., Zhang D., Zheng Y., Gu T., Zhou X., Dorizzi B. (2018), C-FMCW based contactless respiration detection using acoustic signal, [in:] Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4): 1–20, https://doi.org/10.1145/3161188

  117. Wang Y., Wang Z., Zhang J.A., Zhang H., Xu M. (2023), Vital sign monitoring in dynamic environment via mmWave radar and camera fusion, IEEE Transactions on Mobile Computing, 23(5): 4163–4180, https://doi.org/10.1109/TMC.2023.3288850

  118. Wang Z., Qiu F. (2020), Voice signal noise reduction processing method, microphone and electronic equipment, Unified Patents, Patent No. CN-109065067-A.

  119. Wang Z., Zhang F., Li S., Jin B. (2021), Exploiting passive beamforming of smart speakers to monitor human heartbeat in real time, [in:] 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, https://doi.org/10.1109/GLOBECOM46510.2021.9685922

  120. Wu S.,Wang W., Bian Y., Xu Z. (2020), Wind noise processing method, device, and system employing multiple microphones, and storage medium, Patent.

  121. Xiao S., Ji X., Yan C., Zheng Z., Xu W. (2023), MicPro: Microphone-based voice privacy protection, [in:] Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 1302–1316, https://doi.org/10.1145/3576915.3616616

  122. Xiao W., Yu L. (2021), Non-contact passive sensing of acoustic emission signal using the air-coupled transducer, Health Monitoring of Structural and Biological Systems XV, 11593: 412–419, https://doi.org/10.1117/12.2583218

  123. Xie W., Tian R., Zhang J., Zhang Q. (2020), Noncontact respiration detection leveraging music and broadcast signals, IEEE Internet of Things Journal, 8(4): 2931–2942, https://doi.org/10.1109/JIOT.2020.3021915

  124. Xie Z., Nederlander A., Park I., Ye F. (2023), Poster: Quantifying signal quality using autoencoder for robust RF-based respiration monitoring, [in:] Proceedings of the 8th ACM/IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies, pp. 187–188, https://doi.org/10.1145/3580252.3589999

  125. Xiong J., Hong H., Xiao L., Wang E., Zhu X. (2023), Vital signs detection with difference beamforming and orthogonal projection filter based on SIMO-FMCW radar, IEEE Transactions on Microwave Theory and Techniques, 71(1): 83–92, https://doi.org/10.1109/TMTT.2022.3181129

  126. Xu W. et al. (2021), Unobtrusive vital signs and activity monitoring based on dual mode fiber, Optical Fiber Technology, 64: 102530, https://doi.org/10.1016/j.yofte.2021.102530

  127. Xu W., Shen Y., Yu C., Dong B., Zhao W., Wang Y. (2020), Long modal interference in multimode fiber and its application in vital signs monitoring, Optics Communications, 474: 126100, https://doi.org/10.1016/j.optcom.2020.126100

  128. Xu X., Yu J., Chen Y. (2022), Leveraging acoustic signals for fine-grained breathing monitoring in driving environments, IEEE Transactions on Mobile Computing, 21(3): 1018–1033, https://doi.org/10.1109/TMC.2020.3015828

  129. Yang F., He S., Sadanand S., Yusuf A., Bolic M. (2022), Contactless measurement of vital signs using thermal and RGB cameras: A study of COVID-19-related health monitoring, Sensors, 22(2): 627, https://doi.org/10.3390/s22020627

  130. Zakrzewski M. (2015), Methods for Doppler Radar Monitoring of Physiological Signals, Ph.D. Thesis, Tampere University of Technology, Finland, https://trepo.tuni.fi//handle/10024/114695

  131. Zhang G., Geng L., Xie F., He C.-D. (2024), A dynamic convolution-transformer neural network for multiple sound source localization based on functional beamforming, Mechanical Systems and Signal Processing, 211: 111272, https://doi.org/10.1016/j.ymssp.2024.111272

  132. Zhang H. et al. (2023a), Radar-Beat: Contactless beat-by-beat heart rate monitoring for life scenes, Biomedical Signal Processing and Control, 86(Part C): 105360, https://doi.org/10.1016/j.bspc.2023.105360

  133. Zhang X., Bao Z., Yin Y., Yang X., Xu X., Niu Q. (2023b), Finding potential pneumoconiosis patients with commercial acoustic device, [in:] 2023 IEEE Symposium on Computers and Communications (ISCC), pp. 310–315, https://doi.org/10.1109/ISCC58397.2023.10217963

  134. Zhao T., Fu X., Zhou Y., Zhan J., Chen K., Li Z. (2023), Noncontact monitoring of heart rate variability using a fiber optic sensor, IEEE Internet of Things Journal, 10(17): 14988–14994, https://doi.org/10.1109/JIOT.2023.3262634