Sound Source Localisation in Digital Hearing Aids: A Review of Critical Factors

Downloads

Authors

  • Fermín SCALITI Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba, Argentina ORCID ID 0009-0004-1806-4878
  • Diego A. EVIN Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba; Facultad de Ingenieríıa, Universidad Nacional de Entre Ríos, Argentina ORCID ID 0000-0002-4903-7897
  • Fabián C. TOMMASINI Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba, Argentina ORCID ID 0000-0002-3916-3451

Abstract

Sound source localisation is a fundamental ability for a listener’s functional interaction with the environment, yet it remains a significant challenge for hearing aid users. In general, they perform worse on spatial hearing tests than individuals with normal hearing. This narrative literature review examines the critical factors affecting sound source localisation when hearing aids are worn, with a focus on direction identification. We analysed peer-reviewed articles published over the past three decades to evaluate the impacts of the type of fitting, form factor, acoustic coupling, processing delay, bandwidth, directional microphones, and dynamic range compression on localisation ability. As a general conclusion, there is a consensus in the literature that binaural and open fittings, with microphones at the ear entrance and with extended bandwidth, significantly improve localisation performance. In addition, this review is intended to provide valuable information that can guide future innovations in hearing aid technology to improve users’ hearing experiences and their integration into the environment.

Keywords:

Hearing aids, sound source localisation, binaural hearing, head-related transfer functions

References


  1. Agnew J., Thornton J.M. (2000), Just noticeable and objectionable group delays in digital hearing aids, Journal of the American Academy of Audiology, 11(6): 330–336, https://doi.org/10.1055/s-0042-1748062.

  2. Agterberg M.J.H., Snik A.F.M., Hol M.K.S., Van Wanrooij M.M., Van Opstal A.J. (2012), Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: Improved directional hearing with a bone-conduction device, Hearing Research, 286(1–2): 9–18, https://doi.org/10.1016/j.heares.2012.02.012.

  3. Akeroyd M.A. (2014), An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners, Trends in Hearing, 18, https://doi.org/10.1177/2331216514560442.

  4. Akeroyd M.A., Whitmer W.M. (2016), Spatial hearing and hearing aids, [in:] Hearing Aids, Popelka G.R., Moore B.C.J., Fay R.R., Popper A.N. [Eds.], Springer International Publishing, pp. 181–215, https://doi.org/10.1007/978-3-319-33036-5. 7.

  5. Alexander J. (2016), Hearing aid delay and current drain in modern digital devices, Canadian Audiologist, 3(4): 4.

  6. Bakke M.H. (1999), The contribution of interaural intensity differences to the horizontal auditory localization of narrow bands of noise, Ph.D. Thesis, The City University of New York.

  7. Best V., Carlile S., Jin C., van Schaik A. (2005), The role of high frequencies in speech localization, The Journal of the Acoustical Society of America, 118(1): 353–363, https://doi.org/10.1121/1.1926107.

  8. Best V., Kalluri S., McLachlan S., Valentine S., Edwards B., Carlile S. (2010), A comparison of CIC and BTE hearing aids for three-dimensional localization of speech, International Journal of Audiology, 49(10): 723–732, https://doi.org/10.3109/14992027.2010.484827.

  9. Bille M., Jensen A.-M., Kjarbol E., Vesterager V., Sibelle P., Nielsen H. (1999), Clinical study of a digital vs an analogue hearing aid, Scandinavian Audiology,28(2): 127–135, https://doi.org/10.1080/010503999424851.

  10. Blauert J. (1997), Spatial Hearing: The Psychophysics of Human Sound Localization, The MIT Press.

  11. Blauert J., Braasch J. [Eds.] (2020), The Technology of Binaural Understanding, Springer Nature.

  12. Boymans M., Goverts S.T., Kramer S.E., Festen J.M., Dreschler W.A. (2009), Candidacy for bilateral hearing aids: A retrospective multicenter study, Journal of Speech, Language, and Hearing Research, 52(1): 130–140, https://doi.org/10.1044/1092-4388(2008/07-0120).

  13. Boymans M., Theo Goverts S., Kramer S.E., Festen J.M., Dreschler W.A. (2008), A prospective multi-centre study of the benefits of bilateral hearing aids, Ear and Hearing, 29(6): 930–941, https://doi.org/10.1097/AUD.0b013e31818713a8.

  14. Bradley R.A. (1984), Paired comparisons: Some basic procedures and examples, [in:] Handbook of Statistics, 4: 299–326, https://doi.org/10.1016/S0169-7161(84)04016-5.

  15. Bramslow L. (2010), Preferred signal path delay and high-pass cut-off in open fittings, International Journal of Audiology, 49(9): 634–644, https://doi.org/10.3109/14992021003753482.

  16. Bregman A.S. (1994), Auditory Scene Analysis: The Perceptual Organization of Sound, The MIT Press.

  17. Brown A.D., Rodriguez F.A., Portnuff C.D.F., Goupell M.J., Tollin D.J. (2016), Time-varying distortions of binaural information by bilateral hearing aids: Effects of nonlinear frequency compression, Trends in Hearing, 20, https://doi.org/10.1177/2331216516668303.

  18. Byrne, D., Noble W. (1998), Optimizing sound localization with hearing aids, Trends in Amplification, 3(2): 51–73, https://doi.org/10.1177/108471389800300202.

  19. Byrne D., Noble W., Glauerdt B. (1996), Effects of earmold type on ability to locate sounds when wearing hearing aids, Ear and Hearing, 17(3): 218–228, https://doi.org/10.1097/00003446-199606000-00005.

  20. Byrne D., Noble W., LePage B. (1992), Effects of long-term bilateral and unilateral fitting of different hearing aid types on the ability to locate sounds, Journal of the American Academy of Audiology, 3(6): 369–382.

  21. Byrne D., Noble W., Ter-Horst K. (1995), Effects of hearing aids on localization of sounds by people with sensorineural and conductive/mixed hearing losses, The Australian Journal of Audiology, 17: 79–86.

  22. Carlile S., Balachandar K., Kelly H. (2014), Accommodating to new ears: The effects of sensory and sensory-motor feedback, The Journal of the Acoustical Society of America, 135(4): 2002–2011, https://doi.org/10.1121/1.4868369.

  23. Carlile S., Blackman T. (2014), Relearning auditory spectral cues for locations inside and outside the visual field, JARO: Journal of the Association for Research in Otolaryngology, 15: 249–263, https://doi.org/10.1007/s10162-013-0429-5.

  24. Carlile S., Blackman T., Cooper J. (2007), The plastic ear: Coping with a life time of change, [in:] 19th International Congress on Acoustics (ICA).

  25. Carlini A., Bordeau C., Ambard M. (2024), Auditory localization: A comprehensive practical review, Frontiers in Psychology, 15, https://doi.org/10.3389/fpsyg.2024.1408073.

  26. Chen X., Zhao L., Cui J., Li H., Wang X. (2025), Hybrid convolutional neural network-transformer model for end-to-end binaural sound source localization in reverberant environments, IEEE Access, 13: 36701–36713, https://doi.org/10.1109/ACCESS.2025.3545065.

  27. Chinnaraj G., Tanniru K., Rajan Raveendran R. (2021), Speech perception in noise and localization performance of digital noise reduction algorithm in hearing aids with ear-to-ear synchronization, Journal of All India Institute of Speech and Hearing, 40(1): 23–30, https://doi.org/10.4103/jose.JOSE_4_21.

  28. Conrad S., Rout A. (2013), Perceived occlusion and comfort in receiver-in-the-ear hearing aids, American Journal of Audiology, 22(2): 283–290, https://doi.org/10.1044/1059-0889(2013/11-0025).

  29. Cubick J., Buchholz J.M., Best V., Lavandier M., Dau T. (2018), Listening through hearing aids affects spatial perception and speech intelligibility in normal hearing listeners, The Journal of the Acoustical Society of America, 144(5): 2896–2905, https://doi.org/10.1121/1.5078582.

  30. Denk F., Ewert S.D., Kollmeier B. (2018a), Spectral directional cues captured by hearing device microphones in individual human ears, The Journal of the Acoustical Society of America, 144(4): 2072–2087, https://doi.org/10.1121/1.5056173.

  31. Denk F., Ewert S.D., Kollmeier B. (2019), On the limitations of sound localization with hearing devices, The Journal of the Acoustical Society of America, 146(3): 1732–1744, https://doi.org/10.1121/1.5126521.

  32. Denk F., Hiipakka M., Kollmeier B., Ernst S.M.A. (2018b), An individualised acoustically transparent earpiece for hearing devices, International Journal of Audiology, 57(sup3): S62–S70, https://doi.org/10.1080/14992027.2017.1294768.

  33. Denk F., Schepker H., Doclo S., Kollmeier B. (2018c), Equalization filter design for achieving acoustic transparency in a semi-open fit hearing device, [in:] Speech Communication; 13th ITG-Symposium, pp. 1–5.

  34. Derleth P. et al. (2021), Binaural signal processing in hearing aids, Seminars in Hearing, 42(03): 206–223, https://doi.org/10.1055/s-0041-1735176.

  35. Diedesch A.C. (2016), Binaural-cue weighting in sound localization with open-fit hearing aids and in simulated reverberation, Ph.D. Thesis, Vanderbilt University.

  36. Dillon H. (2012), Hearing Aids, 2nd ed., Thieme, New York.

  37. Dillon H., Keidser G., O’Brien A., Silberstein H. (2003), Sound quality comparisons of advanced hearing aids, The Hearing Journal, 56(4): 30–40, https://doi.org/10.1097/01.HJ.0000293908.50552.34.

  38. Dorman M.F., Loiselle L.H., Cook S.J., Yost W.A., Gifford R.H. (2016), Sound source localization by normal-hearing listeners, hearing-impaired listeners and cochlear implant listeners, Audiology and Neurotology, 21(3): 127–131, https://doi.org/10.1159/000444740.

  39. Drennan W.R., Gatehouse S., Howell P., Tasell D.V., Lund S. (2005), Localization and speech identification ability of hearing-impaired listeners using phase-preserving amplification, Ear and Hearing, 26(5): 461–472, https://doi.org/10.1097/01.aud.0000179690.30137.21.

  40. Durin V., Carlile S., Guillon P., Best V., Kalluri S. (2014), Acoustic analysis of the directional information captured by five different hearing aid styles, The Journal of the Acoustical Society of America, 136(2): 818–828, https://doi.org/10.1121/1.4883372.

  41. Fabry D.A., Bhowmik A.K. (2021), Improving speech understanding and monitoring health with hearing aids using artificial intelligence and embedded sensors, Seminars in Hearing, 42(03): 295–308, https://doi.org/10.1055/s-0041-1735136.

  42. Fernandez J., Hyvärinen P., Kressner A.A. (2025), Localization accuracy of phantom sound sources on the horizontal plane by bilateral hearing aid users in aided free-field and non–free-field conditions, The Journal of the Acoustical Society of America, 157(2): 1151–1161, https://doi.org/10.1121/10.0035828.

  43. Freyman R.L., Helfer K.S., McCall D.D., Clifton R.K. (1999), The role of perceived spatial separation in the unmasking of speech, The Journal of the Acoustical Society of America, 106(6): 3578–3588, https://doi.org/10.1121/1.428211.

  44. García-Barrios G., Krause D.A., Politis A., Mesaros, A., Gutiérrez-Arriola J.M., Fraile R. (2022), Binaural source localization using deep learning and head rotation information, [in:] 2022 30th European Signal Processing Conference (EUSIPCO), pp. 36–40, https://doi.org/10.23919/EUSIPCO55093.2022.9909764.

  45. Gatehouse S., Noble W. (2004), The speech, spatial and qualities of hearing scale (SSQ), International Journal of Audiology, 43(2): 85–99, https://doi.org/10.1080/14992020400050014.

  46. Georganti E., Courtois G., Derleth P., Launer S. (2020), Intelligent hearing instruments – Trends and challenges, [in:] The Technology of Binaural Understanding, Blauert J., Braasch J. [Eds.], pp. 733–761, Springer International Publishing, https://doi.org/10.1007/978-3-030-00386-9. 24.

  47. Goli P., van de Par S. (2023), Deep learning based speech specific source localization by using binaural and monaural microphone arrays in hearing aids, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31: 1652–1666. https://doi.org/10.1109/TASLP.2023.3268734.

  48. Gomez G. (2019), Consolidating natural spatial perception and improved SNR in hearing aids: Jackrabbit, a new method, Ph.D, Thesis, Technische Universität München, https://mediatum.ub.tum.de/1463635.

  49. Groth J., Birkmose M. (2004), Disturbance caused by varying propagation delay in non-occluding hearing aid fittings, International Journal of Audiology, 43(10): 594–599, https://doi.org/10.1080/14992020400050076.

  50. Grumiaux P.-A., Kitić S., Girin L., Guérin A. (2022), A survey of sound source localization with deep learning methods, The Journal of the Acoustical Society of America, 152(1): 107–151, https://doi.org/10.1121/10.0011809.

  51. Hassager H.G., Wiinberg A., Dau T. (2017), Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment, The Journal of the Acoustical Society of America, 141(4): 2556–2568, https://doi.org/10.1121/1.4979783.

  52. Hawley M.L., Litovsky R.Y., Colburn H.S. (1999), Speech intelligibility and localization in a multi-source environment, The Journal of the Acoustical Society of America, 105(6): 3436–3448, https://doi.org/10.1121/1.424670.

  53. Hawley M.L., Litovsky R.Y., Culling J.F. (2004), The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer, The Journal of the Acoustical Society of America, 115(2): 833–843, https://doi.org/10.1121/1.1639908.

  54. Hofman P.M., Van Riswick J.G.A., Van Opstal A.J. (1998), Relearning sound localization with new ears, Nature Neuroscience, 1: 417–421, https://doi.org/10.1038/1633.

  55. Hohmann V. (2023), The future of hearing aid technology: Can technology turn us into superheroes?, Zeitschrift für Gerontologie und Geriatrie, 56: 283–289, https://doi.org/10.1007/s00391-023-02179-y.

  56. Ibrahim I., Parsa V., Macpherson E., Cheesman M. (2012), Evaluation of speech intelligibility and sound localization abilities with hearing aids using binaural wireless technology, Audiology Research, 3(1): e1, https://doi.org/10.4081/audiores.2013.e1.

  57. Jespersen C.T., Kirkwood B.C., Groth J. (2021), Increasing the effectiveness of hearing aid directional microphones, Seminars in Hearing, 42(03): 224–236, https://doi.org/10.1055/s-0041-1735131.

  58. Jeub M., Schafer M., Esch T., Vary P. (2010), Model-based dereverberation preserving binaural cues, IEEE Transactions on Audio, Speech, and Language Processing, 18(7): 1732–1745, https://doi.org/10.1109/TASL.2010.2052156.

  59. Kara E. et al . (2024), Improving speech intelligibility in noise and spatial perception: The critical role of hearing aid microphone position, Frontiers in Neuroscience, 18, https://doi.org/10.3389/fnins.2024.1475122.

  60. Kato M., Uematsu H., Kashino M., Hirahara T. (2003), The effect of head motion on the accuracy of sound localization, Acoustical Science and Technology, 24(5): 315–317, https://doi.org/10.1250/ast.24.315.

  61. Keidser G. et al . (2006), The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers, International Journal of Audiology, 45(10): 563–579, https://doi.org/10.1080/14992020600920804.

  62. Keidser G., O’Brien A., Hain J.-U., McLelland M., Yeend I. (2009), The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users, International Journal of Audiology, 48(11): 789–803, https://doi.org/10.3109/14992020903036357.

  63. Khan A., Waqar A., Kim B., Park D. (2025), A review on recent advances in sound source localization techniques, challenges, and applications, Sensors and Actuators Reports, 9: 100313, https://doi.org/10.1016/j.snr.2025.100313.

  64. Killion M.C. (1997), A critique of four popular statements about compression, The Hearing Review, 4(2): 36–38.

  65. Köbler S., Rosenhall U. (2002), Horizontal localization and speech intelligibility with bilateral and unilateral hearing aid amplification: Localizacion horizontaly discriminacion del lenguaje con adaptacion unilateral y bilateral de auxiliares auditivos, International Journal of Audiology, 41(7): 395–400, https://doi.org/10.3109/14992020209090416.

  66. Koenig W. (1950), Subjective effects in binaural hearing, The Journal of the Acoustical Society of America, 22(1): 61–62, https://doi.org/10.1121/1.1906578.

  67. Kollmeier B., Peissig J., Hohmann V. (1993), Binaural noise-reduction hearing aid scheme with real-time processing in the frequency domain, Scandinavian Audiology Supplementum, 38: 28–38.

  68. Korhonen P., Lau C., Kuk F., Keenan D., Schumacher J. (2015), Effects of coordinated compression and pinna compensation features on horizontal localization performance in hearing aid users, Journal of the American Academy of Audiology, 26(01): 80–92, https://doi.org/10.3766/jaaa.26.1.9.

  69. Kumar S., Nayak S., Kanagokar V., Pitchai Muthu A.N. (2024), Does bilateral hearing aid fitting improve spatial hearing ability: A systematic review and meta-analysis, Disability and Rehabilitation: Assistive Technology, 19(8): 2729–2741, https://doi.org/10.1080/17483107.2024.2316293.

  70. Langendijk E.H.A., Bronkhorst A.W. (2002), Contribution of spectral cues to human sound localization, The Journal of the Acoustical Society of America, 112(4): 1583–1596, https://doi.org/10.1121/1.1501901.

  71. Levy S.C., Freed D.J., Nilsson M., Moore B.C.J., Puria S. (2015), Extended high-frequency bandwidth improves speech reception in the presence of spatially separated masking speech, Ear and Hearing, 36(5): e214–e224, https://doi.org/10.1097/AUD.0000000000000161.

  72. Lorenzi C., Gatehouse S., Lever C. (1999), Sound localization in noise in normal-hearing listeners, The Journal of the Acoustical Society of America, 105(3): 1810–1820, https://doi.org/10.1121/1.426719.

  73. Ma N., May T., Brown G.J. (2017), Exploiting deep neural networks and head movements for robust binaural localization of multiple sources in reverberant environments, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(12): 2444–2453, https://doi.org/10.1109/TASLP.2017.2750760.

  74. Macpherson E.A., Kerr D. (2008), Minimum head movements required to localize narrowband sounds, [in:] American Audiology Society 2008 Annual Meeting.

  75. Marquardt D., Hadad E., Gannot S., Doclo S. (2015), Theoretical analysis of linearly constrained multi-channel wiener filtering algorithms for combined noise reduction and binaural cue preservation in binaural hearing aids, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(12): 2384–2397, https://doi.org/10.1109/TASLP.2015.2479940.

  76. McAnally K.I., Martin R.L. (2014), Sound localization with head movement: Implications for 3-d audio displays, Frontiers in Neuroscience, 8, https://doi.org/10.3389/fnins.2014.00210.

  77. Mecklenburger J., Groth T. (2016), Wireless technologies and hearing aid connectivity, [in:] Hearing Aids, Popelka G.R., Moore B.C.J., Fay R.R., Popper A.N. [Eds.], pp. 131–149, Springer International Publishing, https://doi.org/10.1007/978-3-319-33036-5. 5.

  78. Middlebrooks J.C., Green D.M. (1990), Directional dependence of interaural envelope delays, The Journal of the Acoustical Society of America, 87(5): 2149–2162, https://doi.org/10.1121/1.399183.

  79. Mills A.W. (1958), On the minimum audible angle, The Journal of the Acoustical Society of America, 30(4): 237–246, https://doi.org/10.1121/1.1909553.

  80. Minnaar P., Favrot S., Buchholz J.M. (2010), Improving hearing aids through listening tests in a virtual sound environment, The Hearing Journal, 63(10): 40–44, https://doi.org/10.1097/01.HJ.0000389926.64797.3e.

  81. Mondelli M.F.C.G., Garcia T.M., Hashimoto F.M.T., Rocha A.V. (2015), Open fitting: Performance verification of receiver in the ear and receiver in the aid, Brazilian Journal of Otorhinolaryngology, 81(3): 270–275, https://doi.org/10.1016/j.bjorl.2014.08.013.

  82. Moore B.C.J., Stone M.A., Alcántara J.I. (2001), Comparison of the electroacoustic characteristics of five hearing aids, British Journal of Audiology, 35(5): 307–325, https://doi.org/10.1080/00305364.2001.11745249.

  83. Mueller M.F., Kegel A., Schimmel S.M., Dillier N., Hofbauer M. (2012), Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes, The Journal of the Acoustical Society of America, 131(6): 4732–4742, https://doi.org/10.1121/1.4705292.

  84. Neher T., Wagener K.C., Latzel M. (2017), Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario, Hearing Research, 353: 36–48, https://doi.org/10.1016/j.heares.2017.07.014.

  85. Noble W., Byrne D., Lepage B. (1994), Effects on sound localization of configuration and type of hearing impairment, The Journal of the Acoustical Society of America, 95(2): 992–1005, https://doi.org/10.1121/1.408404.

  86. Noble W., Gatehouse S. (2006), Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ): Efectos de la adaptacion uni o bilateral de auxiliares auditivos en las habilidades medidas la escala de cualidades auditiva, especial y del lenguaje (SSQ), International Journal of Audiology, 45(3): 172–181, https://doi.org/10.1080/14992020500376933.

  87. Noble W., Sinclair S., Byrne D. (1998), Improvement in aided sound localization with open earmolds: Observations in people with high-frequency hearing loss, Journal of the American Academy of Audiology, 9(1): 25–34.

  88. Oldfield S.R., Parker S.P.A. (1984), Acuity of sound localisation: A topography of auditory space. II. Pinna cues absent, Perception, 13(5): 601–617, https://doi.org/10.1068/p130601.

  89. Pausch F., Aspöck L., Vorländer M., Fels J. (2018), An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss, Trends in Hearing, 22, https://doi.org/10.1177/2331216518800871.

  90. Perrett S., Noble W. (1997), The contribution of head motion cues to localization of low-pass noise, Perception & Psychophysics, 59: 1018–1026, https://doi.org/10.3758/BF03205517.

  91. Picou E.M., Aspell E., Ricketts T.A. (2014), Potential benefits and limitations of three types of directional processing in hearing aids, Ear and Hearing, 35(3): 339–352, https://doi.org/10.1097/AUD.0000000000000004.

  92. Picou E.M. (2020), MarkeTrak 10 (MT10) survey results demonstrate high satisfaction with and benefits from hearing aids, Seminars in Hearing, 41(01): 021–036, https://doi.org/10.1055/s-0040-1701243.

  93. Picou E.M. (2022), Hearing aid benefit and satisfaction results from the MarkeTrak 2022 survey: Importance of features and hearing care professionals, Seminars in Hearing, 43(04): 301–316, https://doi.org/10.1055/s-0042-1758375.

  94. Piechowiak T., Udesen J., Moeller K., Gran F., Dittberner A. (2015), Promoting off-axis listening and preserving spatial cues with binaural directionality II, [in:] Proceedings of the International Symposium on Auditory and Audiological Research, 5: 285–292.

  95. Risoud M. et al. (2018), Sound source localization, European Annals of Otorhinolaryngology, Head and Neck Diseases, 135(4): 259–264, https://doi.org/10.1016/j.anorl.2018.04.009.

  96. Roth S., Müller F.-U., Angermeier J., Hemmert W., Zirn S. (2024), Effect of a processing delay between direct and delayed sound in simulated open fit hearing aids on speech intelligibility in noise, Frontiers in Neuroscience, 17, https://doi.org/10.3389/fnins.2023.1257720.

  97. Schwartz A.H., Shinn-Cunningham B.G. (2013), Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners, The Journal of the Acoustical Society of America, 133(4): 2329–2339, https://doi.org/10.1121/1.4794386.

  98. Shaw E.A.G. (1974), Transformation of sound pressure level from the free field to the eardrum in the horizontal plane, The Journal of the Acoustical Society of America, 56(6): 1848–1861, https://doi.org/10.1121/1.1903522.

  99. Shinn-Cunningham B. (2000), Learning reverberation: Consideration for spatial auditory displays, [in:] International Conference on Auditory Display (ICAD 2000), Atlanta, Georgia, USA.

  100. Shiraishi K. (2021), Sound localization and lateralization by bilateral bone conduction devices, middle ear implants, and cartilage conduction hearing aids, Audiology Research, 11(4): 508–523, https://doi.org/10.3390/audiolres11040046.

  101. Smith P., Davis A., Day J., Unwin S., Day G., Chalupper J. (2008), Real-world preferences for linked bilateral processing, The Hearing Journal, 61(7): 33–38, https://doi.org/10.1097/01.HJ.0000325657.80281.9c.

  102. Sockalingam R., Holmberg M., Eneroth K., Shulte M. (2009), Binaural hearing aid communication shown to improve sound quality and localization, The Hearing Journal, 62(10): 46–47, https://doi.org/10.1097/01.HJ.0000361850.27208.35.

  103. Song T., Zhang W., Chen J. (2022), An end-to-end binaural sound localization model based on the equalization and cancellation theory, [in:] AES Europe Spring 2022 – 152nd Audio Engineering Society Convention 2022, pp. 275–283.

  104. Stenfelt S., Goode R.L. (2005), Bone-conducted sound: Physiological and clinical aspects, Otology & Neurotology, 26(6): 1245–1261, https://doi.org/10.1097/01.mao.0000187236.10842.d5.

  105. Stone M.A., Moore B.C.J. (1999), Tolerable hearing aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses, Ear and Hearing, 20(3): 182–192, https://doi.org/10.1097/00003446-199906000-00002.

  106. Stone M.A., Moore B.C.J. (2002), Tolerable hearing aid delays. II. Estimation of limits imposed during speech production, Ear and Hearing, 23(4): 325–338, https://doi.org/10.1097/00003446-200208000-00008.

  107. Stone M.A., Moore B.C.J. (2003), Tolerable hearing aid delays. III. Effects on speech production and perception of across-frequency variation in delay, Ear and Hearing, 24(2): 175–183, https://doi.org/10.1097/01.AUD.0000058106.68049.9C.

  108. Stone M.A., Moore B.C.J. (2005), Tolerable hearing-aid delays: IV. Effects on subjective disturbance during speech production by hearing-impaired subjects, Ear and Hearing, 26(2): 225–235, https://doi.org/10.1097/00003446-200504000-00009.

  109. Stone M.A., Moore B.C.J., Meisenbacher K., Derleth R.P. (2008), Tolerable hearing aid delays. V. Estimation of limits for open canal fittings, Ear and Hearing, 29(4): 601–617, https://doi.org/10.1097/AUD.0b013e3181734ef2.

  110. Strom K. (2020), Hearing aid unit sales increase by 6.5% in 2019, The Hearing Review, 27(2): 2.

  111. Taylor B. (2006), Real-world satisfaction and benefit with open-canal fittings, The Hearing Journal, 59(11): 74–82, https://doi.org/10.1097/01.HJ.0000286222.91963.39.

  112. Thurlow W.R., Mangels J.W., Runge P.S. (1967), Head movements during sound localization, The Journal of the Acoustical Society of America, 42(2): 489–493, https://doi.org/10.1121/1.1910605.

  113. Van den Bogaert T., Carette E., Wouters J. (2009a), Sound localization with and without hearing aids, [in:] NAG-DAGA International Conference on Acoustics, pp. 1314–1317.

  114. Van den Bogaert T., Doclo S., Wouters J., Moonen M. (2009b), Speech enhancement with multichannel Wiener filter techniques in multimicrophone binaural hearing aids, The Journal of the Acoustical Society of America, 125(1): 360–371, https://doi.org/10.1121/1.3023069.

  115. Van den Bogaert T., Klasen T.J., Moonen M., Van Deun L., Wouters J. (2006), Horizontal localization with bilateral hearing aids: Without is better than with, The Journal of the Acoustical Society of America, 119(1): 515–526, https://doi.org/10.1121/1.2139653.

  116. Van Eeckhoutte M., Folkeard P., Glista D., Scollie S. (2020), Speech recognition, loudness, and preference with extended bandwidth hearing aids for adult hearing aid users, International Journal of Audiology, 59(10): 780–791, https://doi.org/10.1080/14992027.2020.1750718.

  117. Vecchiotti P., Ma N., Squartini S., Brown G.J. (2019), End-to-end binaural sound localisation from the raw waveform, [in:] ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 451–455, https://doi.org/10.1109/ICASSP.2019.8683732.

  118. Von Hornbostel E.M., Wertheimer M. (1920), On the perception of sound direction [in German], [in:] Proceedings of the Prussian Academy of Sciences, pp. 388-396.

  119. Wallach H. (1940), The role of head movements and vestibular and visual cues in sound localization, Journal of Experimental Psychology, 27(4): 339–368, https://doi.org/10.1037/h0054629.

  120. Wang D., Brown G.J. [Eds.] (2006), Computational Auditory Scene Analysis: Principles, Algorithms, and Applications, Wiley-IEEE Press.

  121. Werner L., Fay R.R., Popper A.N. [Eds.] (2012), Human Auditory Development, Springer, https://doi.org/10.1007/978-1-4614-1421-6.

  122. Wiggins I.M., Seeber B.U. (2011), Dynamic-range compression affects the lateral position of sounds, The Journal of the Acoustical Society of America, 130(6): 3939–3953, https://doi.org/10.1121/1.3652887.

  123. Wightman F.L., Kistler D.J. (1992). The dominant role of low-frequency interaural time differences in sound localization, The Journal of the Acoustical Society of America, 91(3): 1648–1661, https://doi.org/10.1121/1.402445.

  124. Winkler A., Latzel M., Holube I. (2016), Open versus closed hearing-aid fittings: A literature review of both fitting approaches, Trends in Hearing, 20, https://doi.org/10.1177/2331216516631741.

  125. Wittkop T., Hohmann V., Kollmeier B. (1996), Noise reduction strategies in digital binaural hearing aids, [in:] Psychoacoustics, Speech and Hearing Aids, Singapore: World Scientific, pp. 245–251.

  126. Yost W.A. (2017), History of sound source localization: 1850–1950, [in:] Proceedings of Meetings on Acoustics, 30(1): 050002, https://doi.org/10.1121/2.0000529.

  127. Zavdy O. et al. (2022), The effect of hearing aids on sound localization in mild unilateral conductive hearing loss, Journal of the American Academy of Audiology, 33(6): 357–363, https://doi.org/10.1055/a-1889-6578.

  128. Zhang T., Mustiere F., Micheyl C. (2016), Intelligent hearing aids: The next revolution, [in:] 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 72–76, https://doi.org/10.1109/EMBC.2016.7590643.

  129. Zheng Y., Swanson J., Koehnke J., Guan J. (2022), Sound localization of listeners with normal hearing, impaired hearing, hearing aids, bone-anchored hearing instruments, and cochlear implants: A review, American Journal of Audiology, 31(3): 819–834, https://doi.org/10.1044/2022-AJA-22-00006.