Acoustic Decaphonic Piano: Calculating Safe Retuningsfrom 12-TET to 10-TET and Beyond

Downloads

Authors

  • Aleksander BOGUCKI Center for Theoretical Physics, Polish Academy of Sciences, Poland; Center for Quantum Nanoscience, Institute for Basic Science (IBS), South Korea ORCID ID 0000-0001-7698-9984
  • Andrzej WŁODARCZYK Pracownia Pianin i Fortepianów, Poland
  • Paweł NUROWSKI Center for Theoretical Physics, Polish Academy of Sciences, Poland; Guangdong Technion – Israel Institute of Technology, China ORCID ID 0000-0001-8534-7959

Abstract

This paper presents a method for safe retuning of fixed-pitch string instruments to alternative musical scales with fewer degrees than their original design. Our approach uses a systematic monotonic surjective mapping to assign the existing set of strings to a new, smaller set of pitch classes. The primary goal is to preserve the instrument’s timbre and structural integrity by keeping string tension changes within safe limits. We demonstrate the method on a grand piano and an upright piano retuned from 12-tone equal temperament (12-TET, 12EDO) to 10-tone equal temperament (10-TET, 10EDO). Presented approach may be generalized for retuning from N- to M-step scales (N > M) and to other fixed-pitch string instruments. A grand piano was safely retuned using the proposed method and successfully used in a professional concert.

Keywords:

monotonic surjective mapping, decaphonic piano, 10-tone equal temperament, 10TET, 10EDO, alternative instrument tuning, xenharmonic, string tension

References


  1. Bandy C. (2025), A study in reharmonization: Jacob Collier’s subversive vocal arrangements of popular tunes, Ph.D. Thesis, Kent State University, United States, Ohio.

  2. Bucur V. (2016), Handbook of Materials for String Musical Instruments, Springer Cham, https://doi.org/10.1007/978-3-319-32080-9.

  3. Fletcher H. (1964), Normal vibration frequencies of a stiff piano string, The Journal of the Acoustical Society of America, 36(1): 203–209, https://doi.org/10.1121/1.1918933.

  4. Fraser J. (2023), Microtonality in a Western setting, [in:] Music Talks: Proceedings of the Western Sydney University Undergraduate Musicology Conference 2022, Williams J., Stead M., Leonard J. [Eds.], Western Sydney University, https://doi.org/10.26183/X0RYNF79.

  5. Hideya A. (2021), Like Spring Sea, 10 tone equal temperament song (10-TET 10EDO), https://www.schwaben.jp/ongaku08.html.

  6. Hobby K. Sethares W.A. (2016), Inharmonic strings and the hyperpiano, Applied Acoustics, 114: 317–327, https://doi.org/10.1016/j.apacoust.2016.07.029.

  7. Hunt A.A. (2021), Foreword to The Equal-Tempered Keyboard, https://zwillinge.zentral.zone/vorschau/etkfrontmatter.pdf.

  8. Hunt A.A. (2022), The Equal-Tempered Keyboard [digital album], (recorded in 2021), https://aaronandrewhunt.bandcamp.com/album/theequal-tempered-keyboard.

  9. Louchet J. (2021), The Keyboard Stringing Guide for the Restoration of Pianos, Harpsichords and Clavichords.

  10. Martin G. (2025), The best-selling Nintendo franchises of all time, Endlessmode, https://www.pastemagazine.com/games/nintendo/best-selling-nintendofranchises. (access: 12.06.2025).

  11. Mathews M.V., Pierce J.R., Reeves A., Roberts L.A. (1988), Theoretical and experimental explorations of the Bohlen–Pierce scale, The Journal of the Acoustical Society of America, 84(4): 1214–1222, https://doi.org/10.1121/1.396622.

  12. Matthias M. (1990), Steinway Service Manual: Guide to the Care and Maintenance of a Steinway, E. Bochinsky, Germany, https://openlibrary.org/books/OL18238258M/Steinway_service_manual.

  13. Mendel A. (1949), Devices for transposition in the organ before 1600, Acta Musicologica, 21: 24–40, https://doi.org/10.2307/931533.

  14. Możdżer L., Danielsson L., Fresco Z. (2024), Beamo [CD], Teraz Teraz, https://www.discogs.com/release/33164979-Leszek-Mo%C5%BCd%C5%Bcer-Lars-Danielsson-3-Zohar-Fresco-Beamo.

  15. Możdżer L., Danielsson L., Fresco Z. (2025), Beamo [CD], ACT, https://www.prestomusic.com/jazz/products/9752880--beamo.

  16. Pilch M., Toporowski M. (2014), Former Temperations: Acoustic Basics and Practical Use [in Polish: Dawne Temperacje: Podstawy Akustyczne i Praktyczne Wykorzystanie], Akademia Muzyczna im. Karola Szymanowskiego, Frodo, Poland.

  17. Rasch R.A. (1984), Approaches to tuning and temperament, The Journal of the Acoustical Society of America, 76(S1): S40–S41, https://doi.org/10.1121/1.2021849.

  18. Rose M., Law D. (2001), A Handbook of Historical Stringing Practice of Early Keyboard Instruments, Vogel & Scheer.

  19. Senpai Z. (2023), Chromatic Etude for 10 EDO Piano No. 1 “Intervals”, https://scorefol.io/w/cllchoxyp000kl90f15j182bm. (access: 5.03.2025).

  20. Sethares W.A. (1998), Tuning, Timbre, Spectrum, Scale, Springer-Verlag London, https://doi.org/10.1007/978-1-4471-4177-8_12.

  21. Sevish (2017), Vidya, [on:] Harmony hacker [digital album], https://sevish.bandcamp.com/track/vidya.

  22. Stahl- und Drahtwerk Röslau GmbH (n.d.), Steel wire for strings "Röslau Blue Label" (access: 2.03.2025).

  23. Stanevičiūtė, Janicka-Słysz M. (2022), Music and Change in the Eastern Baltics Before and After 1989, Academic Studies Press, https://doi.org/10.2307/j.ctv2xszr6z.

  24. Thomas P.E. (1996), Music for one or more alternately tuned acoustic pianos, 1920–1993: Trends in melody, harmony, and technique, Ph.D. Thesis, University of Cincinnati, United States.

  25. Tomala L. (2024), Octave divided into 10 parts. Scientists prepare decaphonic piano for jazz legend Leszek Możdżer, Science in Poland  (access: 5.03.2025). 

  26. Xenharmonic Wiki (n.d.), 10edo/Music, https://en.xen.wiki/w/10edo/Music. (access: 5.03.2025).