Direction Estimation and Tracking of Coherent Sources Using a Single Acoustic Vector Sensor
Abstract
A single acoustic vector sensor (AVS) cannot be used to find the direction-of-arrival (DOA) of two or more coherent (fully correlated) sources. We have proposed a technique for estimating DOAs (in 2D geometry) of two simultaneous coherent sources using single AVS under the assumption that acoustic sources enter in the field sequentially. The DOA estimation has been investigated with two different configurations of AVS, each consisting of three microphones in a plane. The technique has been also applied in tracking (a) an acoustic source in the presence of stationary interfering coherent source and (b) two coherent sources when the sources are changing their locations alternatively. The experimental environment has been generated using the Finite-Element Method tool viz. COMSOL to corroborate the proposed scheme.Keywords:
acoustic intensity, acoustic vector sensor, Direction of Arrival (DOA), Finite Element Method (FEM), tracking of acoustic sourceReferences
1. Cao J., Liu J., Wang J., Lai, X. (2016), Acoustic vector sensor: reviews and future perspectives, IET Signal Processing, 11(1): 1–9, https://doi.org/10.1049/ietspr 2016.0111.
2. Chen H., Zhao J. (2005), Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources, Signal Processing, 85(4): 837–847, https://doi.org/10.1016/j.sigpro.2004.07.030
3. Chung J. (1978), Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch, The Journal of the Acoustical Society of America, 64(6): 1613–1616, https://doi.org/10.1121/1.382145
4. de Bree H.-E. (2003), An overview of microflown technologies, Acta Acustica united with Acustica, 89(1): 163–172.
5. Dmochowski J., Benesty J., Affes S. (2007), Direction of arrival estimation using the parameterized spatial correlation matrix, IEEE Transactions on Audio, Speech, and Language Processing, 15(4): 1327– 1339, https://doi.org/10.1109/TASL.2006.889795
6. Du W., Kirlin R.L. (1991), Improved spatial smoothing techniques for DOA estimation of coherent signals, IEEE Transactions on Signal Processing, 39(5): 1208–1210, https://doi.org/10.1109/78.80975
7. Evans J.E., Johnson J.R., Sun D. (1982), Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems, Technical Report, Lincoln Laboratory.
8. Fahy F.J. (1977), Measurement of acoustic intensity using the cross-spectral density of two microphone signals, The Journal of the Acoustical Society of America, 62(4): 1057–1059, https://doi.org/10.1121/1.381601
9. Han F.-M., Zhang S.-H. (2004), Separation of coherent multi-path signals with improved MUSIC algorithm, Systems Engineering and Electronics, 26(6): 721–723, 763.
10. Han F.-M., Zhang X.-D. (2005), An ESPRIT-like algorithm for coherent DOA estimation, IEEE Antennas and Wireless Propagation Letters, 4: 443–446, https://doi.org/10.1109/LAWP.2005.860194
11. Hawkes M., Nehorai A. (1998), Acoustic vectorsensor beamforming and Capon direction estimation, IEEE Transactions on Signal Processing, 46(9): 2291– 2304, https://doi.org/10.1109/ICASSP.1995.479926
12. Hochwald B., Nehorai A. (1996), Identifiability in array processing models with vector-sensor applications, IEEE Transactions on Signal Processing, 44(1): 83–95, https://doi.org/10.1109/78.482014
13. Kotus J. (2012), Multiple sound sources localization in real time using acoustic vector sensor, [in:] Dziech A., Czyzewski A. [Eds], Multimedia Communications, Services and Security. MCSS 2012. Communications in Computer and Information Science, Vol. 287, pp. 168–179, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-30721-8_17
14. Kotus J. (2015), Multiple sound sources localization in free field using acoustic vector sensor, Multimedia tools and applications, 74(12): 4235–4251, https://doi.org/10.1007/s11042-013-1549-y
15. Kotus J., Czyzewski A. (2010), Acoustic radar employing particle velocity sensors, [in:] Nguyen N.T., Zgrzywa A., Czyzewski A. [Eds], Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80, pp. 93–103, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-14989-4_9
16. Kotus J., Czyzewski A., Kostek B. (2016), 3D acoustic field intensity probe design and measurements, Archives of Acoustics, 41(4): 701–711, https://doi.org/10.1515/aoa-2016-0067
17. Kotus J., Kostek B. (2015), Measurements and visualization of sound intensity around the human head in free field using acoustic vector sensor, Journal of the Audio Engineering Society, 63(1/2): 99–109, https://doi.org/10.17743/jaes.2015.0009
18. Kotus J., Lopatka K., Czyzewski A. (2014), Detection and localization of selected acoustic events in acoustic field for smart surveillance applications, Multimedia Tools and Applications, 68(1): 5–21, https://doi.org/10.1007/s11042-012-1183-0
19. Krishnappa G. (1981), Cross-spectral method of measuring acoustic intensity by correcting phase and gain mismatch errors by microphone calibration, The Journal of the Acoustical Society of America, 69(1): 307– 310, https://doi.org/10.1121/1.385314
20. Liu Z., Ruan X., He J. (2013), Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array, Multidimensional Systems and Signal Processing, 24(1): 105–120, https://doi.org/10.1007/s11045-011-0158-z
21. Lockwood M.E., Jones D.L. (2006), Beamformer performance with acoustic vector sensors in air, The Journal of the Acoustical Society of America, 119(1): 608–619, https://doi.org/10.1121/1.2139073
22. Miah K.H., Hixon E.L. (2010), Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system, The Journal of the Acoustical Society of America, 127(4): 2338–2346, https://doi.org/10.1121/1.3327508
23. Moschioni G., Saggin B., Tarabini M. (2007), Sound source identification using coherence-and intensity-based methods, Instrumentation and Measurement, IEEE Transactions on, 56(6): 2478–2485, https://doi.org/10.1109/TIM.2007.908246
24. Nehorai A., Paldi E. (1994), Acoustic vector-sensor array processing, Signal Processing, IEEE Transactions on, 42(9): 2481–2491, https://doi.org/10.1109/78.317869
25. Odya P., Kotus J., Szczodrak M., Kostek B. (2017), Sound intensity distribution around organ pipe, Archives of Acoustics, 42(1): 13–22, https://doi.org/10.1515/aoa-2017-0002
26. Palanisamy P., Kalyanasundaram N., Swetha P. (2012), Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array, Signal Processing, 92(1): 19–28, https://doi.org/10.1016/j.sigpro 2011.05.021.
27. Pillai S.U., Kwon, B.H. (1989), Forward/backward spatial smoothing techniques for coherent signal identification, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(1): 8–15, https://doi.org/10.1109/29.17496
28. Qian C., Huang L., Zeng W.-J., So H.C. (2014), Direction-of-arrival estimation for coherent signals without knowledge of source number, IEEE Sensors Journal 14(9): 3267–3273, https://doi.org/10.1109/JSEN 2014.2327633.
29. Rinford J. (1981), Technical review to advance techniques in acoustical, Electrical and Mechanical Measurements, Bruel and Kjær, DK-2850 NAERUM, Denmark, 2: 3.
30. Shan T.-J., Wax M., Kailath T. (1985), On spatial smoothing for direction-of-arrival estimation of coherent signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4): 806–811, https://doi.org/10.1109/TASSP.1985.1164649
31. Thompson J., Tree D. (1981), Finite difference approximation errors in acoustic intensity measurements, Journal of Sound and Vibration, 75(2): 229–238, https://doi.org/10.1016/0022-460X%2881%2990341-2
32. Wajid M., Kumar A., Bahl R. (2016a), Bearing estimation in a noisy and reverberant environment using an air acoustic vector sensor, IUP Journal of Electrical and Electronics Engineering, 9(2): 53.
33. Wajid M., Kumar A., Bahl R. (2016b), Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry, The Journal of the Acoustical Society of America, 139(5): 2815–2832, https://doi.org/10.1121/1.4948566
34. Wajid M., Kumar A., Bahl R. (2017a), Directionfinding accuracy of an air acoustic vector sensor in correlated noise field, 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), IEEE, pp. 21–25, https://doi.org/10.1109/ISPCC 2017.8269643.
35. Wajid M., Kumar A., Bahl R. (2017b), Directionof-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84–88, https://doi.org/10.1109/MSPCT.2017.8363979
36. Wajid M., Kumar A., Bahl R. (2017c), Directionof-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84–88, https://doi.org/10.1109/MSPCT.2017.8363979
37. Wang H., Kaveh M. (1985), Coherent signalsubspace processing for the detection and estimation of angles of arrival of multiple wide-band sources, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4): 823–831, https://doi.org/10.1109/TASSP 1985.1164667.
38. Wu Y., Li G., Hu Z., Hu Y. (2014), Unambiguous directions of arrival estimation of coherent sources using acoustic vector sensor linear arrays, IET Radar, Sonar & Navigation, 9(3): 318–323, https://doi.org/10.1049/ietrsn.2014.0191
2. Chen H., Zhao J. (2005), Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources, Signal Processing, 85(4): 837–847, https://doi.org/10.1016/j.sigpro.2004.07.030
3. Chung J. (1978), Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch, The Journal of the Acoustical Society of America, 64(6): 1613–1616, https://doi.org/10.1121/1.382145
4. de Bree H.-E. (2003), An overview of microflown technologies, Acta Acustica united with Acustica, 89(1): 163–172.
5. Dmochowski J., Benesty J., Affes S. (2007), Direction of arrival estimation using the parameterized spatial correlation matrix, IEEE Transactions on Audio, Speech, and Language Processing, 15(4): 1327– 1339, https://doi.org/10.1109/TASL.2006.889795
6. Du W., Kirlin R.L. (1991), Improved spatial smoothing techniques for DOA estimation of coherent signals, IEEE Transactions on Signal Processing, 39(5): 1208–1210, https://doi.org/10.1109/78.80975
7. Evans J.E., Johnson J.R., Sun D. (1982), Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems, Technical Report, Lincoln Laboratory.
8. Fahy F.J. (1977), Measurement of acoustic intensity using the cross-spectral density of two microphone signals, The Journal of the Acoustical Society of America, 62(4): 1057–1059, https://doi.org/10.1121/1.381601
9. Han F.-M., Zhang S.-H. (2004), Separation of coherent multi-path signals with improved MUSIC algorithm, Systems Engineering and Electronics, 26(6): 721–723, 763.
10. Han F.-M., Zhang X.-D. (2005), An ESPRIT-like algorithm for coherent DOA estimation, IEEE Antennas and Wireless Propagation Letters, 4: 443–446, https://doi.org/10.1109/LAWP.2005.860194
11. Hawkes M., Nehorai A. (1998), Acoustic vectorsensor beamforming and Capon direction estimation, IEEE Transactions on Signal Processing, 46(9): 2291– 2304, https://doi.org/10.1109/ICASSP.1995.479926
12. Hochwald B., Nehorai A. (1996), Identifiability in array processing models with vector-sensor applications, IEEE Transactions on Signal Processing, 44(1): 83–95, https://doi.org/10.1109/78.482014
13. Kotus J. (2012), Multiple sound sources localization in real time using acoustic vector sensor, [in:] Dziech A., Czyzewski A. [Eds], Multimedia Communications, Services and Security. MCSS 2012. Communications in Computer and Information Science, Vol. 287, pp. 168–179, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-30721-8_17
14. Kotus J. (2015), Multiple sound sources localization in free field using acoustic vector sensor, Multimedia tools and applications, 74(12): 4235–4251, https://doi.org/10.1007/s11042-013-1549-y
15. Kotus J., Czyzewski A. (2010), Acoustic radar employing particle velocity sensors, [in:] Nguyen N.T., Zgrzywa A., Czyzewski A. [Eds], Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80, pp. 93–103, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-14989-4_9
16. Kotus J., Czyzewski A., Kostek B. (2016), 3D acoustic field intensity probe design and measurements, Archives of Acoustics, 41(4): 701–711, https://doi.org/10.1515/aoa-2016-0067
17. Kotus J., Kostek B. (2015), Measurements and visualization of sound intensity around the human head in free field using acoustic vector sensor, Journal of the Audio Engineering Society, 63(1/2): 99–109, https://doi.org/10.17743/jaes.2015.0009
18. Kotus J., Lopatka K., Czyzewski A. (2014), Detection and localization of selected acoustic events in acoustic field for smart surveillance applications, Multimedia Tools and Applications, 68(1): 5–21, https://doi.org/10.1007/s11042-012-1183-0
19. Krishnappa G. (1981), Cross-spectral method of measuring acoustic intensity by correcting phase and gain mismatch errors by microphone calibration, The Journal of the Acoustical Society of America, 69(1): 307– 310, https://doi.org/10.1121/1.385314
20. Liu Z., Ruan X., He J. (2013), Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array, Multidimensional Systems and Signal Processing, 24(1): 105–120, https://doi.org/10.1007/s11045-011-0158-z
21. Lockwood M.E., Jones D.L. (2006), Beamformer performance with acoustic vector sensors in air, The Journal of the Acoustical Society of America, 119(1): 608–619, https://doi.org/10.1121/1.2139073
22. Miah K.H., Hixon E.L. (2010), Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system, The Journal of the Acoustical Society of America, 127(4): 2338–2346, https://doi.org/10.1121/1.3327508
23. Moschioni G., Saggin B., Tarabini M. (2007), Sound source identification using coherence-and intensity-based methods, Instrumentation and Measurement, IEEE Transactions on, 56(6): 2478–2485, https://doi.org/10.1109/TIM.2007.908246
24. Nehorai A., Paldi E. (1994), Acoustic vector-sensor array processing, Signal Processing, IEEE Transactions on, 42(9): 2481–2491, https://doi.org/10.1109/78.317869
25. Odya P., Kotus J., Szczodrak M., Kostek B. (2017), Sound intensity distribution around organ pipe, Archives of Acoustics, 42(1): 13–22, https://doi.org/10.1515/aoa-2017-0002
26. Palanisamy P., Kalyanasundaram N., Swetha P. (2012), Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array, Signal Processing, 92(1): 19–28, https://doi.org/10.1016/j.sigpro 2011.05.021.
27. Pillai S.U., Kwon, B.H. (1989), Forward/backward spatial smoothing techniques for coherent signal identification, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(1): 8–15, https://doi.org/10.1109/29.17496
28. Qian C., Huang L., Zeng W.-J., So H.C. (2014), Direction-of-arrival estimation for coherent signals without knowledge of source number, IEEE Sensors Journal 14(9): 3267–3273, https://doi.org/10.1109/JSEN 2014.2327633.
29. Rinford J. (1981), Technical review to advance techniques in acoustical, Electrical and Mechanical Measurements, Bruel and Kjær, DK-2850 NAERUM, Denmark, 2: 3.
30. Shan T.-J., Wax M., Kailath T. (1985), On spatial smoothing for direction-of-arrival estimation of coherent signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4): 806–811, https://doi.org/10.1109/TASSP.1985.1164649
31. Thompson J., Tree D. (1981), Finite difference approximation errors in acoustic intensity measurements, Journal of Sound and Vibration, 75(2): 229–238, https://doi.org/10.1016/0022-460X%2881%2990341-2
32. Wajid M., Kumar A., Bahl R. (2016a), Bearing estimation in a noisy and reverberant environment using an air acoustic vector sensor, IUP Journal of Electrical and Electronics Engineering, 9(2): 53.
33. Wajid M., Kumar A., Bahl R. (2016b), Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry, The Journal of the Acoustical Society of America, 139(5): 2815–2832, https://doi.org/10.1121/1.4948566
34. Wajid M., Kumar A., Bahl R. (2017a), Directionfinding accuracy of an air acoustic vector sensor in correlated noise field, 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), IEEE, pp. 21–25, https://doi.org/10.1109/ISPCC 2017.8269643.
35. Wajid M., Kumar A., Bahl R. (2017b), Directionof-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84–88, https://doi.org/10.1109/MSPCT.2017.8363979
36. Wajid M., Kumar A., Bahl R. (2017c), Directionof-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84–88, https://doi.org/10.1109/MSPCT.2017.8363979
37. Wang H., Kaveh M. (1985), Coherent signalsubspace processing for the detection and estimation of angles of arrival of multiple wide-band sources, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4): 823–831, https://doi.org/10.1109/TASSP 1985.1164667.
38. Wu Y., Li G., Hu Z., Hu Y. (2014), Unambiguous directions of arrival estimation of coherent sources using acoustic vector sensor linear arrays, IET Radar, Sonar & Navigation, 9(3): 318–323, https://doi.org/10.1049/ietrsn.2014.0191

