Archives of Acoustics, 47, 2, pp. 151-167, 2022
10.24425/aoa.2022.141646

Microphone Based Acoustic Vector Sensor for Direction Finding with Bias Removal

Mohd WAJID
https://www.amu.ac.in/faculty/electronics-engineering/mohd-wajid
Department of Electronics Engineering, Z.H.C.E.T., Aligarh Muslim Univesity Centre for Applied Research in Electronics, Indian Institute of Technology Delhi
India

Arun KUMAR
http://care.iitd.ac.in/People/Faculty/AKumar.html
Centre for Applied Research in Electronics, Indian Institute of Technology Delhi
India

Rajendar BAHL
http://care.iitd.ac.in/People/Faculty/R_Bahl.html
Centre for Applied Research in Electronics, Indian Institute of Technology Delhi
India

The acoustic vector sensor (AVS) is used to measure the acoustic intensity, which gives the direction-of-arrival (DOA) of an acoustic source. However, while estimating the DOA from the measured acoustic intensity the finite microphone separation (d) in a practical AVS causes angular bias. Also, in the presence of noise there
exists a trade off between the bias (strictly increasing function of d) and variance (strictly decreasing function of d) of the DOA estimate. In this paper, we propose a novel method for mitigating the angular bias caused due to finite microphone separation in an AVS. We have reduced the variance by increasing the microphone separation and then removed the bias with the proposed bias model. Our approach employs the finite element method (FEM) and curves fitting to model the angular bias in terms of microphone separations and frequency
of a narrowband signal. Further, the bias correction algorithm based on the intensity spectrum has been proposed to improve the DOA estimation accuracy of a broadband signal. Simulation results demonstrate that the proposed bias correction scheme significantly reduces the angular bias and improves the root mean square angular error (RMSAE) in the presence of noise. Experiments have been performed in an acoustic full anechoic room to corroborate the effect of microphone separation on DOA estimation and the efficacy of the
bias correction method.
Keywords: acoustic measurements; acoustic sensor; acoustic vector sensor; direction-of-arrival estimation; finite element analysis; microphones; particle velocity; sound source localization
Full Text: PDF

References

Bai M., Juan S.-W., Chen C.-C. (2013), Particle velocity estimation based on a two-microphone array and Kalman filter, The Journal of the Acoustical Society of America, 133(3): 1425–1432, doi: 10.1121/1.4788986.

Cazzolato B.S., Hansen C.H. (2000), Errors in the measurement of acoustic energy density in one-dimen sional sound fields, Journal of Sound and Vibration, 236(5): 801–831, doi: 10.1006/jsvi.2000.3002.

Chung J. (1978), Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch, The Journal of the Acoustical Society of America, 64(6): 1613–1616, doi: 10.1121/1.382145.

Dall’Osto D.R., Dahl P.H. (2015), Using vector sensors to measure the complex acoustic intensity field, The Journal of the Acoustical Society of America, 138(3): 1767–1767, doi: 10.1121/1.4933587.

de Bree H.-E. (2003), An overview of microflown technologies, Acta Acustica United with Acustica, 89(1): 163–172.

de Bree H.-E., Druyvesteyn E., Raangs R. (2001), A low cost intensity probe, [in:] Audio Engineering Society Convention, Paper 5292, http://www.aes.org/e-lib/browse.cfm?elib=9971.

Fahy F.J. (1977), Measurement of acoustic intensity using the cross-spectral density of two microphone signals, The Journal of the Acoustical Society of America, 62(4): 1057–1059, doi: 10.1121/1.381601.

Gade S. (1982), Sound Intensity (Theory), Technical Review to Advance Techniques in Acoustical, Electrical and Mechanical Measurements, Bruel & Kjær, DK-2850 NAERUM Offset, Denmark, No. 3.

Giraud J.H., Gee K.L., Ellsworth J.E. (2010), Acoustic temperature measurement in a rocket noise

field, The Journal of the Acoustical Society of America, 127(5): EL179–EL184, doi: 10.1121/1.381601.

Hickling R., Brown A. (2011), Determining the direction to a sound source in air using vector soundintensity probes, The Journal of the Acoustical Society of America, 129(1): 219–224, doi: 10.1121/1.3518754.

Jacobsen F. (2007), Sound intensity measurements, [in:] Handbook of Noise and Vibration Control, Crocker M.J. [Ed.], John Wiley & Sons: Hoboken, New Jersey, Ltd, pp. 534–548, doi: 10.1002/9780470209707.ch45.

Jacobsen F. (2014), Sound intensity, [in:] Springer Handbook of Acoustics, Springer Handbooks, Rossing T.D. [Ed.], pp. 1093–1114, Springer: New York, NY, doi: 10.1007/978-1-4939-0755-7_25.

Jacobsen F., Cutanda V., Juhl P.M. (1998), A numerical and experimental investigation of the performance of sound intensity probes at high frequencies, The Journal of the Acoustical Society of America, 103(2): 953–961, doi: 10.1121/1.421212.

Jacobsen F., de Bree H.-E. (2005), A comparison of two different sound intensity measurement principles, The Journal of the Acoustical Society of America, 118(3): 1510–1517, doi: 10.1121/1.1984860.

Kotus J. (2012), Multiple sound sources localization in real time using acoustic vector sensor, Communications in Computer and Information Science – Multimedia Communications, Services and Security, 287: 168–179, doi: 10.1007/978-3-642-30721-8_17.

Kotus J. (2015), Multiple sound sources localization in free field using acoustic vector sensor, Multimedia Tools and Applications, 74(12): 4235–4251, doi: 10.1007/s11042-013-1549-y.

Kotus J., Czyżewski A. (2010), Acoustic radar employing particle velocity sensors, Advances in Multimedia and Network Information System Technologies, 80: 93–103, doi: 10.1007/978-3-642-14989-4_9.

Kotus J., Czyżewski A., Kostek B. (2016), 3D acoustic field intensity probe design and measurements, Archives of Acoustics, 41(4): 701–711, doi: 10.1515/aoa-2016-0067.

Kotus J., Kostek B. (2015), Measurements and visualization of sound intensity around the human head in free field using acoustic vector sensor, Journal of the Audio Engineering Society, 63(1/2): 99–109, doi: 10.17743/jaes.2015.0009.

Kotus J., Lopatka K., Czyżewski A. (2014), Detection and localization of selected acoustic events in acoustic field for smart surveillance applications, Multimedia Tools and Applications, 68(1): 5–21, doi: 10.1007/s11042-012-1183-0.

Lee C.H., Lee H.R.L., Wong K.T., Razo M. (2016), The spatial-matched filter beam pattern of a biaxial non-orthogonal velocity sensor, Journal of Sound and Vibration, 367: 250–255, doi: 10.1016/j.jsv.2015.12.046.

Miah K.H., Hixon E.L. (2010), Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system, The Journal of the Acoustical Society of America, 127(4): 2338–2346, doi: 10.1121/1.3327508.

Odya P., Kotus J., Szczodrak M., Kostek B. (2017), Sound intensity distribution around organ pipe, Archives of Acoustics, 42(1): 13–22, doi: 10.1515/aoa-2017-0002.

Olenko A., Wong K.T. (2015), Noise statistics across the three axes of a tri-axial velocity sensor constructed of pressure sensors, IEEE Transactions on Aerospace and Electronic Systems, 51(2): 843–852, doi: 10.1109/TAES.2014.140242.

Olenko A.Y., Wong K.T. (2013), Noise statistics of a higher order directional sensor, realized by computing finite differences spatially across multiple isotropic sensors, IEEE Transactions on Aerospace and Electronic Systems, 49(4): 2792–2798, doi: 10.1109/TAES.2013.6621854.

Parkins J.W., Sommerfeldt S.D., Tichy J. (2000), Error analysis of a practical energy density sensor, The Journal of the Acoustical Society of America, 108(1): 211–222, doi: 10.1121/1.429458.

Raangs R., Druyvesteyn W., De Bree H. (2003), A low-cost intensity probe, Journal of the Audio Engineering Society, 51(5): 344–357, http://www.aes.org/e-lib/browse.cfm?elib=12225.

Shi J. (2015), DOA estimation for arbitrary four-sensor array configurations based on three-dimensional sound intensity measurement, International Journal of Applied Mathematics & Information Sciences, 9(2): 899–905, 10.12785/amis/090238.

Shirahatti U., Crocker M.J. (1992), Two-microphone finite difference approximation errors in the interference fields of point dipole sources, The Journal of the Acoustical Society of America, 92(1): 258–267, doi: 10.1121/1.404289.

Song Y., Li Y.L., Wong K.T. (2015), Acoustic direction finding using a pressure sensor and a uniaxial particle velocity sensor, IEEE Transactions on Aerospace and Electronic Systems, 51(4): 2560–2569, doi: 10.1109/TAES.2015.130837.

Song Y., Wong K.T. (2015), Acoustic direction finding using a spatially spread tri-axial velocity sensor, IEEE Transactions on Aerospace and Electronic Systems, 51(2): 834–842, doi: 10.1109/TAES.2014.130320.

Song Y., Wong K.T., Li Y. (2015), Direction finding using a biaxial particle-velocity sensor, Journal of Sound and Vibration, 340: 354–367, doi: 10.1016/j.jsv.2014.11.027.

Thomas D.C., Christensen B.Y., Gee K.L. (2015), Phase and amplitude gradient method for the estimation of acoustic vector quantities, The Journal of the Acoustical Society of America, 137(6): 3366–3376, doi: 10.1121/1.4914996.

Thompson J., Tree D. (1981), Finite difference approximation errors in acoustic intensity measurements, Journal of Sound and Vibration, 75(2): 229–238, doi: 10.1016/0022-460X(81)90341-2.

Wajid M., Kumar A. (2020), Direction estimation and tracking of coherent sources using a single acoustic vector sensor, Archives of Acoustics, 45(2): 209–219, doi: 10.24425/aoa.2020.132495.

Wajid M., Kumar A., Bahl R. (2016), Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry, The Journal of the Acoustical Society of America, 139(5): 2815–2832, doi: 10.1121/1.4948566.

Wiederhold C.P., Gee K.L., Blotter J.D., Sommerfeldt S.D. (2012), Comparison of methods for processing acoustic intensity from orthogonal multimicrophone probes, The Journal of the Acoustical Society of America, 131(4): 2841–2852, doi: 10.1121/1.3692242.

Wiederhold C.P., Gee K.L., Blotter J.D., Sommerfeldt S.D., Giraud J.H. (2014), Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity, The Journal of the Acoustical Society of America, 135(5): 2797–2807, doi: 10.1121/1.4871180.

Wong K.T., Zoltowski M.D. (1997), Extendedaperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones, IEEE Journal of Oceanic Engineering, 22(4): 659–672, doi: 10.1109/48.650832.

Zoltowski M.D., Wong K.T. (2000), Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform cartesian array grid, IEEE Transactions on Signal Processing, 48(8): 2205–2210, doi: 10.1109/78.852001.




DOI: 10.24425/aoa.2022.141646

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)