Archives of Acoustics, 47, 1, pp. 33–42, 2022
10.24425/aoa.2022.140730

Estimation of Metal Foam Microstructure Parameters for Maximum Sound Absorption Coefficient in Specified Frequency Band Using Particle Swarm Optimisation

Rohollah FALLAH MADVARI
University of Medical Sciences, Yazd
Iran, Islamic Republic of

Mohsen NIKNAM SHARAK
University of Birjand, Birjand
Iran, Islamic Republic of

Mahsa JAHANDIDEH TEHRANI
Griffith University, Queensland
Australia

Milad ABBASI
Saveh University of Medical Sciences, Saveh
Iran, Islamic Republic of

The study aims to estimate metal foam microstructure parameters for the maximum sound absorption coefficient (SAC) in the specified frequency band to obtain optimum metal foam fabrication. Lu’s theory model is utilised to calculate the SAC of metallic foams that refers to three morphological parameters: porosity, pore size, and pore opening. After Lu model validation, particle swarm optimisation (PSO) is used to optimise the parameters. The optimum values are obtained at frequencies 250 to 8000 Hz, porosity of 50 to 95%, a pore size of 0.1 to 4.5 mm, and pore opening of 0.07 to 0.98 mm. The results revealed that at frequencies above 1000 Hz, the absorption efficiency increases due to changes in the porosity, pore size, and pore opening values rather than the thickness. However, for frequencies below 2000 Hz, increasing the absorption efficiency is strongly correlated with an increase in foam thickness. The PSO is successfully used to find optimum absorption conditions, the reference for absorbent fabrication, on a frequency band 250 to 8000 Hz. The outcomes will provide an efficient tool and guideline for optimum estimation of acoustic absorbents.
Keywords: porosity; pore size; pore opening; sound absorption coefficient (SAC); particle swarm optimisation (PSO).
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Allard J., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed., John Wiley & Sons, doi: 10.1002/9780470747339.

Arroyo E., Rayess N., Weaver J. (2014), Enhanced sound absorption of aluminum foam by the diffuse addition of elastomeric rubbers, The Journal of the Acoustical Society of America, 135(4): 2375–2375, doi: 10.1121/1.4877838.

Ashby M.F., Evans A.G., Fleck N.A., Gibson J.L., Hutchinson J.W.,Wadley H.N.G. [Eds] (2000), Metal

Foams: A Design Guide, Butterworth-Heinemann: Burlington, doi: 10.1016/B978-0-7506-7219-1.X5000-4.

Bansod P.V., Mohanty A. (2016), Inverse acoustical characterization of natural jute sound absorbing material by the particle swarm optimization method, Applied Acoustics, 112: 41–52, doi: 10.1016/j.apacoust.2016.05.011.

Bies D.A., Hansen C.H., Howard C.Q. (2017), Engineering Noise Control, CRC Press: Boca Raton, doi: 10.1201/9781351228152.

Campana E.F., Diez M., Fasano G., Peri D. (2013), Initial particles position for PSO, in bound constrained optimization, [in:] Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, Tan Y., Shi Y., Mo H. [Eds], Vol. 7928, pp. 112–119, Springer-Verlag: Berlin, Heidelberg, doi: 10.1007/978-3-642-38703-6_13.

Clerc M. (2010), Particle Swarm Optimization, John Wiley & Sons, doi: 10.1002/9780470612163.

Clerc M., Kennedy J. (2002), The particle swarmexplosion, stability, and convergence in a multidimensional complex space, IEEE transactions on Evolutionary Computation, 6(1): 58–73, doi: 10.1109/4235.985692.

Cura T. (2009), Particle swarm optimization approach to portfolio optimization, Nonlinear Analysis: Real World Applications, 10(4): 2396–2406, doi: 10.1016/j.nonrwa.2008.04.023.

Del Valle Y., Venayagamoorthy G.K., Mohagheghi S., Hernandez J.-C., Harley R.G. (2008), Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Transactions on Evolutionary Computation, 12(2): 171–195, doi: 10.1109/TEVC.2007.896686.

Despois J.-F., Mortensen A. (2005), Permeability of open-pore microcellular materials, Acta Materialia, 53(5): 1381–1388, doi: 10.1016/j.actamat.2004.11.031.

Guan D., Wu J.H., Wu J., Li J., Zhao W. (2015), Acoustic performance of aluminum foams with semiopen cells, Applied Acoustics, 87: 103–108, doi: 10.1016/j.apacoust.2014.06.016.

Hakamada M., Kuromura T., Chen Y., Kusuda H., Mabuchi M. (2006a), High sound absorption of porous aluminum fabricated by spacer method, Applied Physics Letters, 88(25): 254106, doi: 10.1063/1.2216104.

Hakamada M., Kuromura T., Chen Y., Kusuda H., Mabuchi M. (2006b), Sound absorption characteristics of porous aluminum fabricated by spacer method, Journal of Applied Physics, 100(11): 114908, doi: 10.1063/1.2390543.

Hamerly G., Elkan C. (2002), Alternatives to the k-means algorithm that find better clusterings, [in:] Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 600–607, doi: 10.1145/584792.584890.

Han F., Seiffert G., Zhao Y., Gibbs B. (2003), Acoustic absorption behaviour of an open-celled aluminium foam, Journal of Physics D: Applied Physics, 36(3): 294, doi: 10.1088/0022-3727/36/3/312.

Hu X., Shi Y., Eberhart R. (2004), Recent advances in particle swarm, [in:] Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.No. 04TH8753), Vol. 1, pp. 90–97, doi: 10.1109/CEC.2004.1330842.

Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3): 487–497, doi: 10.24425/aoa.2020.134066.

Jafari M.J., Madvari R.F., Sharak M.N., Ebadzadeh T. (2021), Improving the morphological parameters of aluminum foam for maximum sound absorption coefficient using genetic algorithm, Sound & Vibration, 55(2): 117—130, doi: 10.32604/sv.2021.09729.

Jin W. et al. (2015), Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation, Materials, 8(11): 7511–7518, doi: 10.3390/ma8115395.

Kennedy J., Eberhart R. (1995), Particle swarm optimization, [in:] Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

Kuromura T., Hakamada M., Chen Y., Kusuda H., Mabuchi M. (2007), Sound absorption behavior of porous al produced by spacer method, [in:] Advanced Materials Research, Vol. 15, pp. 422–427, Trans Tech Publications Ltd, doi: 10.4028/www.scientific.net/amr.15-17.422.

Li Y., Wang X., Wang X., Ren Y., Han F., Wen C. (2011), Sound absorption characteristics of aluminum foam with spherical cells, Journal of Applied Physics, 110(11): 113525, doi: 10.1063/1.3665216.

Lu T.J., Chen F., He D. (2000), Sound absorption of cellular metals with semiopen cells, The Journal of the Acoustical Society of America, 108(4): 1697–1709, doi: 10.1121/1.1286812.

Lu T.J., Hess A., Ashby M. (1999), Sound absorption in metallic foams, Journal of Applied Physics, 85(11): 7528–7539, doi: 10.1063/1.370550.

Meng H., Xin F., Lu T.J. (2014), Sound absorption optimization of graded semi-open cellular metals by adopting the genetic algorithm method, Journal of Vibration and Acoustics, 136(6): 061007, doi: 10.1115/1.4028377.

Nath S., Sing J.K., Sarkar S.K. (2018), Performance comparison of PSO and its new variants in the context of VLSI global routing, [in:] Particle Swarm Optimization with Applications, Erdogmus P. [Ed.], Ch. 5, IntechOpen: Rijeka, doi: 10.5772/intechopen.72811.

Navacerrada M., Fernández P., Díaz C., Pedrero A. (2013), Thermal and acoustic properties of aluminium foams manufactured by the infiltration process, Applied Acoustics, 74(4): 496–501, doi: 10.1016/j.apacoust.2012.10.006.

Pan H., Wang L., Liu B. (2006), Particle swarm optimization for function optimization in noisy environment, Applied Mathematics and Computation, 181(2): 908–919, doi: 10.1016/j.amc.2006.01.066.

Raut S.V., Kanthale V., Kothavale B. (2016), Review on application of aluminum foam in sound absorption technology, International Journal of Current Engineering and Technology, Special Issue 4: 178–181, 10.14741/Ijcet/22774106/spl.4.2016.36.

Wang D., Tan D., Liu L. (2018), Particle swarm optimization algorithm: an overview, Soft Computing, 22(2): 387–408, doi: 10.1007/s00500-016-2474-6.

Wang X., Lu T.J. (1999), Optimized acoustic properties of cellular solids, The Journal of the Acoustical Society of America, 106(2): 756–765, doi: 10.1121/1.427094.

Wang X.F., Wang X.F., Wei X., Han F.S., Wang X.L. (2011), Sound absorption of open celled aluminium foam fabricated by investment casting method, Materials Science and Technology, 27(4): 800–804, doi: 10.1179/026708309X12506934374047.

World Health Organization (2021a), Deafness and hearing loss, https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.

World Health Organization (2021b), WHO: 1 in 4 people projected to have hearing problems by 2050, https://www.who.int/news/item/02-03-2021-who-1-in-4-people-projected-to-have-hearing-problems-by-2050.

Xie Z., Ikeda T., Okuda Y., Nakajima H. (2004a), Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification, Materials Science and Engineering: A, 386(1–2): 390–395, doi: 10.1016/j.msea.2004.07.058.

Xie Z., Ikeda T., Okuda Y., Nakajima H. (2004b), Characteristics of sound absorption in lotus-type porous magnesium, Japanese Journal of Applied Physics, 43(10R): 7315, doi: 10.1143/jjap.43.7315.

Zhang B., Zhu J. (2016), Inverse methods of determining the acoustical parameters of porous sound absorbing metallic materials, Proceedings of Meetings on Acoustics 22ICA, 28(1): 015006, doi: 10.1121/2.0000329.




DOI: 10.24425/aoa.2022.140730