Simulation Analysis of Beam Intensity Attenuation Patterns and Source Depth Estimation Using a Vertical Long Line Array

Downloads

Authors

  • Hao WANG Hangzhou Applied Acoustics Research Institution, China
  • Guangying ZHENG Hangzhou Applied Acoustics Research Institution, China
  • Fangwei ZHU Hangzhou Applied Acoustics Research Institution, China
  • Xiaohong YANG Hangzhou Applied Acoustics Research Institution, China
  • Shuaishuai ZHANG Hangzhou Applied Acoustics Research Institution, China
  • Xiaowei GUO Hangzhou Applied Acoustics Research Institution, China

Abstract

In the deep-water reliable acoustic path (RAP), when estimating target depth using a vertical array, a large-aperture array can enhance the extraction of the acoustic field interference structure under low signal-to-noise ratio (SNR). However, this operation introduces slow envelope modulation (the envelope amplitude of peak beam intensity decreases with frequency) to the broadband acoustic field interference pattern, significantly degrading the performance of estimating the source depth. The Kraken normal-mode model can accurately calculate low-frequency sound fields in deep-water environments. This paper uses this tool to find that, in the deep-water direct arrival zone (DAZ), the peak beam intensity output of a vertical linear array varies across a broadband frequency range, exhibiting a pattern combining periodic changes of Lloyd’s mirror interference and inherent envelope attenuation changes. The physical mechanism of envelope attenuation is explained through both theoretical derivation and simulation analysis, key factors affecting the envelope-attenuation pattern are clarified, and the impact of beam-intensity envelope attenuation on the depth-estimation method based on matched beam intensity processing (MBIP) is pointed out. Based on this, a modified target depth estimation method of matched beam intensity processing (M-MBIP) that contains an attenuation coefficient is proposed, and its effectiveness is verified through simulated data.

Keywords:

deep-water direct arrival zone (DAZ), Lloyd’s mirror interference, broadband attenuation pattern

References


  1. Duan R., Yang K., Li H., Ma Y. (2017), Acoustic–intensity striations below the critical depth: Interpretation and modeling, The Journal of the Acoustical Society of America, 142(3): EL245 https://doi.org/10.1121/1.5000325.

  2. Duan R., Yang K.D., Ma Y.L., Lei B. (2012), A reliable acoustic path: Physical properties and a source localization method, Chinese Physics B, 21(12): 276–289, https://doi.org/10.1088/1674-1056/21/12/124301.

  3. Gaul R.D., Knobles D.P., Shooter J.A., Wittenborn A.F. (2007), Ambient noise analysis of deep-ocean measurements in the northeast pacific, IEEE Journal of Oceanic Engineering, 32(2): 497–512, https://doi.org/10.1109/JOE.2007.891885.

  4. Kniffin G.P., Boyle J.K., Zurk L.M., Siderius M. (2016), Performance metrics for depth-based signal separation using deep vertical line arrays, The Journal of the Acoustical Society of America, 139(1): 418–425, https://doi.org/10.1121/1.4939740.

  5. Li H. et al. (2022), A multi-step method for passive broadband source localisation using a single vector sensor, IET Radar, Sonar & Navigation, 16(10): 1656–1669, https://doi.org/10.1049/rsn2.12287.

  6. Lei Z., Yang K., Ma Y. (2016), Passive localization in the deep ocean based on cross-correlation function matching, The Journal of the Acoustical Society of America, 139(6): EL196, https://doi.org/10.1121/1.4954053.

  7. McCargar R.K., Zurk L.M. (2012), Depth-based suppression of moving interference with vertical line arrays in the deep ocean, The Journal of the Acoustical Society of America, 132(3 Supplement): 2081, https://doi.org/10.1121/1.4755682.

  8. McCargar R., Zurk L.M. (2013), Depth-based signal separation with vertical line arrays in the deep ocean, The Journal of the Acoustical Society of America, 133(4): EL320, https://doi.org/10.1121/1.4795241.

  9. Porter M.B. (1991), The KRAKEN Normal Mode Program, ACLANT Undersea Research Centre, La Spezia, Italy.

  10. Sun M., Zhou S.-H., Li Z.-L. (2016), Near-surface source localization in the direct-arrival zone in deep water using a deep-located vector sensor, Chinese Science: Physics, Mechanics, Astronomy, 46(9): 094309, https://doi.org/10.1360/SSPMA2016-00080.

  11. Wang W.B. et al. (2021), A broadband source depth estimation based on frequency domain interference pattern structure of vertical array beam output in direct zone of deep water [in Chinese], Acta Acustica, 46(2): 161–170, https://doi.org/10.15949/j.cnki.0371-0025.2021.02.001.

  12. Wei R., Ma X., Li X. (2020), Depth estimation of deep water moving source based on ray separation, Applied Acoustics, 174(2): 107739, https://doi.org/10.1016/j.apacoust.2020.107739.

  13. Worcester P.F. et al. (2013), The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea, The Journal of the Acoustical Society of America, 134(4): 3359–3375, https://doi.org/10.1121/1.4818887.

  14. Xu Z., Li H., Lu D., Duan R., Yang K. (2023), Beam intensity resampling-based source depth estimation by using a vertical line array in deep water, Applied Acoustics, 211: 109495, https://doi.org/10.1016/j.apacoust.2023.109495.

  15. Zhang J.N., Fang E.Z., Wang H., Gui C. (2025), Target depth estimation based on matched broadband complex acoustic intensity by deep water vector vertical array [in Chinese], Acta Acustica, 50(3): 677–692, https://doi.org/10.12395/0371-0025.2024001.

  16. Zheng G.Y., Yang T.C., Ma Q., Du S. (2020), Matched beam intensity processing for a deep vertical line array, The Journal of the Acoustical Society of America, 148(1): 347–358, https://doi.org/10.1121/10.0001583.

  17. Zhou L., Zheng G.Y., Yang T.C. (2022), Target depth estimation by frequency interference matching for a deep vertical array, Applied Acoustics, 186: 108493, https://doi.org/10.1016/j.apacoust.2021.108493.

  18. Zhu F.W., Zheng G.Y., Liu F.C. (2021), Matched arrival pattern-based method for estimating source depth in deep water bottom bounce areas [in Chinese], Journal of Harbin Engineering University, 42(10): 1510–1517, https://doi.org/10.11990/jheu.202007001.

  19. Zhu Q., Sun C. (2023), Underwater source localisation utilising interference pattern under low SNR conditions, IET Radar, Sonar & Navigation, 17(5): 876–887, https://doi.org/10.1049/rsn2.12384.