Electron Properties Investigation of the Near-Surface Region in Crystalline Semiconductors Using the Transverse Acoustoelectric Effect

Downloads

Authors

  • Tadeusz PUSTELNY Silesian University of Technology, Poland

Abstract

The paper presents the acoustoelectric phenomenon in a layered structure: piezoelectric waveguide – semiconductor. The publication presents an original acoustic method for determining the electrical and electron parameters of the subsurface area in crystalline semiconductors. The method is based on the so-called transverse acoustoelectric effect realized in a layer system: piezoelectric waveguide with Rayleigh surface acoustic wave – semiconductor. The paper discusses the physical foundations of the transverse acoustoelectric effect in the piezoelectric – semiconductor layer system, taking into account the distinctness of the physical properties of the semiconductor near-surface region in relation to its volumetric properties. The work covers many experimental studies of the near-surface region of semiconductors. The original method was presented to determine such surface parameters as: surface potential, surface conductivity, mobility of carriers in the subsurface area, life time of charge carriers in surface states. By means of the acoustic method the following semiconductors have been extensively tested: indium phosphide InP and gallium phosphide GaP. These semiconductors are one of the main semiconductors of group III-V, which are the basis of modern photonics, optoelectronics as well as integrated optics. The work also includes an analysis of the measurement possibilities of the developed acoustic method and its limitations, as well as an analysis of the accuracy of the obtained values of the parameters of the subsurface area of crystalline semiconductors.

Keywords:

surface acoustic wave, acoustoelectric effects, electron properties of semiconductors

References

1. Auld B.A. (1973), Acoustic Field and Waves in Solids, Vol. 1, Wiley-Press INC, New York.

2. Barnes C.H.W., Shilton J.M., Robinson A.M. (2000), Quantum computation using electrons trapped by surface acoustic waves, Physical Review B, 62(12): 8410–8419, https://doi.org/10.1103/PhysRevB.62.8410

3. Biroun M.H. et al. (2020a), Acoustic waves for active reduction of contact time in droplet impact, Physical Review Applied, 14(2): 024029, https://doi.org/10.1103/PhysRevApplied.14.024029

4. Biroun H.M., Rahmadi M., Tao R., Torun H., Jangi M., Fu Y. (2020b), Dynamic behavior of droplet impact on inclined surfaces with acoustic waves, Langmuir, 36(34): 10175–10186, https://doi.org/10.1021/acs.langmuir.0c01628

5. Bury P., Hockicko P., Rampton V.W. (2003), Acoustoelectric investigation of optically induced deep centers in GaAs/AlGaAs heterostructures, Acta Physica Slovaca, 53(3): 189–194.

6. Ding X. et al. (2012), Standing surface acoustic wave (SSAW) based multichannel cell sorting, Lab on a Chip, 12(21): 4228–4231, https://doi.org/10.1039/C2LC40751E

7. Drewniak S. et al. (2013), Investigations of SAW structures with oxide graphene layer to detection of selected gases, Acta Physica Polonica A, 124(3): 402–405, https://doi.org/10.12693/APhysPolA.124.402

8. Elhosni M. et al. (2016), Magnetic field SAW sensors based on magnetostrictive-piezoelectric layered structures: FEM modeling and experimental validation, Sensors and Actuators A: Physical, 240: 41–49, https://doi.org/10.1016/j.sna.2015.10.031

9. Ford C.J.B. (2017), Transporting and manipulating single electrons in surface-acoustic-wave minima, Physica Status Solidi B, 254(3): 1600658, https://doi.org/10.1002/pssb.201600658

10. Franke T., Abate A.R., Weitz D.A., Wixforth A. (2009), Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices, Lab on a Chip, 9(18): 2625–2627, https://doi.org/10.1039/B906819H

11. Gulyaev Y.V. (2005), Acoustoelectronics (historical review), Physics–Uspekhi, 48(8): 847–855, https://doi.org/10.1070/PU2005v048n08ABEH002840

Gustafsson M.V., Aref T., Kockum A.F., Ekstrom M.K., Johansson G., Delsing P. (2014), Propagating phonons coupled to an artificial atom, Science, 346(6206): 207–211, https://doi.org/10.1126/science.1257219

13. Ha B.H. et al. (2015), Acoustothermal heating of polydimethylsiloxane microfluidic system, Scientific Reports, 5: 11851, https://doi.org/10.1038/srep11851

14. Hanson R., Kouwenhoven L.P., Petta J.R., Tarucha S., Vandersypen L.M.K. (2007), Spins in fewelectron quantum dots, Reviews of Modern Physics, 79(4): 1217–1265, https://doi.org/10.1103/revmodphys.79.1217

15. Hejczyk T., Pustelny T. (2020), Analysis of the SAW system with the PANI + nafion sensing structure for detection of low concentration carbon monoxide, Archives of Acoustics, 45(4): 681–686, https://doi.org/10.24425/aoa.2020.135274

16. Hejczyk T., Urbanczyk M., Pustelny T., Jakubik W. (2015), Numerical and experimental analysis of the response of a SAW structure with WO3 layers on action of carbon monoxide, Archives of Acoustics, 40(1): 19–24, https://doi.org/10.1515/aoa-2015-0003

17. Hermelin S. et al. (2011), Electrons surfing on a sound wave as a platform for quantum optics with flying electrons, Nature, 477(7365): 435–438, https://doi.org/10.1038/nature10416

18. Holmes P.J. (1987), The Electrochemistry of Semiconductors, Academic Press INC, New York.

19. Jakubik W., Urbanczyk M., Cular S., Bethanabolta V. (2006), Acoustoelectric effect in Surface Acoustic Wave gas sensors (SAW) with metal – free phthalocyanine and palladium sensing bi-layers, ECS Transactions, 1(19): 1–9.

20. Jakubik W.P., Urbanczyk M., Maciak E., Pustelny T., Stolarczyk A. (2005), Polyaniline thin films as a toxic gas sensors in SAW system, Journal de Physique IV France, 129: 121–124, https://doi.org/10.1051/jp4%3A2005129026

21. Jung J.H., Desteer G., Ha B., Park J., Sung H.J. (2016), On-demand droplet splitting using surface acoustic waves, Lab on a Chip, 16(17): 3235–3243, https://doi.org/10.1039/C6LC00648E

22. Jung J.H., Destgeer G., Park J., Ahmed H., Park K., Sung H.J. (2017), On-demand droplet capture and release using microwell-assisted surface acoustic waves, Analytical Chemistry, 89(4): 2211–2215, https://doi.org/10.1021/acs.analchem.6b04542

23. Kapelewski J., Lila B. (2011), Elastic wave behaviour in 2-D acoustic interface superlattices of an altered phase, Archives of Acoustics, 36(3): 603–611.

24. Macinnes A. et al. (1993), Surface Passivation for III-V Semiconductor, NASA Material Research Society, 4(1).

25. Many A., Goldstein Y., Grover N.B. (1979), Semiconductor Surfaces, Nord Holland Press INC, Amsterdam.

26. Muhasincan S., Alan T., Neild A. (2015), Microfluidic plug steering using surface acoustic waves, Lab on a Chip, 15(14): 3030–3038, https://doi.org/10.1039/C5LC00468C

27. Pasternak M., Jasek K., Grabka M., Borowski T. (2020), Surface acoustic wave interaction with a mixture of oxygen and nitrogen, Archives of Acoustics, 45(3): 483–486, https://doi.org/10.24425/aoa.2020.134065

28. Peka G. (1987), Physics of Semiconductor Surfaces [in Ukrainian], Kiev University Press, Ukraine.

29. Pustelny B., Pustelny T. (2009), Transverse acoustoelectric effect applying in surface study of GaP:Te(111), Acta Physica Polonica A, 116(3): 383–384, https://doi.org/10.12693/APhysPolA.116.383

30. Pustelny T. (1995), Acoustic method of investigating the surface potential in semiconductors. Study of the GaP:Te (110) real surface, Ultrasonics, 33(4): 289–294, https://doi.org/10.1016/0041-624X%2894%2900040-V

31. Pustelny T. (1997), Surface acoustic wave techniques for the real-surfaces investigations of InP (111), InAs (111) semiconductors, Acta Acustica united with Acustica, 83(3): 482–488.

32. Pustelny T. et al. (2013), The sensibility of resistance sensor structures with graphene to the action of selected gaseous media, Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2): 293–301, https://doi.org/10.2478/bpasts-2013-0027

33. Pustelny T., Opilski A., Pustelny B. (2008), Determination of some kinetic parameters of fast surface states in silicon single crystals by means of surface acoustic wave method, Acta Physica Polonica A, 114(6): A183–A190, https://doi.org/10.12693/APhysPolA.114.A-183

34. Pustelny T., Pustelny B. (2006), The acoustic method of investigating the electrical carrier mobility of the real GaP:Te (110) surface, Journal de Physique IV France, 137: 223–226, https://doi.org/10.1051/jp4%3A2006137046

35. Pustelny T., Pustelny B. (2008), The acoustic method of the surface potential investigation in GaP:Te (110) real surface, The European Physical Journal: Special Topics, 154(1): 281–284, https://doi.org/10.1140/epjst/e2008-00561-x

36. Red O., Snitko V. (1994), Problems of Semiconductor Surface Physics [in Ukrainian], Scientific Press, Kiev, Ukraine.

37. Rotter M., Wixforth A., Govorov A.O., Ruile W., Bernklau D., Riechert H. (1999), Nonlinear acoustoelectric interactions in GaAs/LiNb03 structures, Applied Physics Letters, 75(7): 965–967, https://doi.org/10.1063/1.124568

38. Samulionis V., Banys J., Vysochanskij Y. (2004), Acoustoelectric effects in Sn2P2S6-type ferroelectric semiconductors, Physica Status Solidi (A), 201(9): 2143–2147, https://doi.org/10.1002/pssa.200406821

39. Schmid L., Franke T. (2013), SAW-controlled drop size for flow focusing, Lab on a Chip, 13(9): 1691–1694, https://doi.org/10.1039/C3LC41233D

40. Sesen M., Alan T., Neild A. (2015), Microfluidic plug steering using surface acoustic waves, Lab on a Chip, 15(14): 3030–3038, https://doi.org/10.1039/C5LC00468C

41. Sesen M., Devendran C., Malikides S., Alan T., Neild A. (2017), Surface acoustic wave enabled pipette on a chip, Lab on a Chip, 17(3): 438–447, https://doi.org/10.1039/C6LC01318J

42. Sesen M., Tunacay A., Neild A. (2014), Microfluidic on-demand droplet merging using surface acoustic waves, Lab on a Chip, 14(17): 3325–3333, https://doi.org/10.1039/C4LC00456F

43. Sze S.M. (1995), Physics of Semiconductor Devices, John Wiley and Sons Inc., New York.

44. Tabib-Azar M. (1998), Characterization of electrical properties of semi-insulating GaAs using acoutoelectric voltage spectroscopy, Solid-State Electronics, 31(7): 1197–1204, https://doi.org/10.1016/0038-1101%2888%2990279-1

45. Urbanczyk M. (2011), Analytical model of a SAW gas sensor, WIT Transactions on Modelling and Simulation, 51: 483–494, https://doi.org/10.2495/CMEM110431

46. Urbaczyk M., Maciak E., Gut K., Pustelny T., Jakubik W. (2011), Layered thin film nanostructures of Pd/WO3−x as resistance gas sensors, Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(4): 401–407, https://doi.org/10.2478/v10175-011-0048-4

47. Vanneste J., Buhler O. (2011), Streaming by leaky surface acoustic waves, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2130): 1779–1800, https://doi.org/10.1098/rspa.2010 0457.

48. Weisbuch C., Vinter B. (1991), Quantum Semiconductor Structures, Academic Press Inc., Boston.

49. Wojas J. (1995), Physics of Semiconductors Surface [in Polish: Fizyka powierzchni półprzewodników], Akademicka Oficyna Wydawnicza, Warszawa.

50. Wolf H.F. (1979), Semiconductors, John Wiley and Sons Inc., New York.

51. Xiang Z.L., Ashhab S., You J.Q., Nori F. (2013), Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Reviews of Modern Physics, 85(2): 623–653, https://doi.org/10.1103/revmodphys.85.623

52. Yaralioglu G. (2011), Ultrasonic heating and temperature measurement in microfluidic channels, Sensors and Actuators A: Physical, 170(1–2): 1–7, https://doi.org/10.1016/j.sna.2011.05.012

53. Zhang S.H., Xu W. (2011), Absorption of surface acoustic waves by graphene, AIP Advances, 1(2): 022146.

54. Zhu J., Popovics J.S., Schubert F. (2004), Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading, The Journal of the Acoustical Society of America, 116(4): 2101–2110, https://doi.org/10.1121/1.1791718

Other articles by the same author(s)